Issue |
ITM Web Conf.
Volume 30, 2019
29th International Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2019)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 11 | |
Section | Microwave Communication, Broadcasting and Navigation Systems (3) | |
DOI | https://doi.org/10.1051/itmconf/20193003003 | |
Published online | 27 November 2019 |
Algorithms for aircraft track optimization in flexible routing
1 Irkutsk Branch of Moscow State Technical University of Civil Aviation, 664047, Irkutsk, Russia
2 Moscow State Technical University of Civil Aviation, 125993, Moscow, Russia
* Corresponding author: skripnikon@yandex.ru
The authors consider the problem of optimization of aircraft flight tracks in air traffic management (ATM) on basis of flexible routing technologies which involve the use of satellite navigation systems (SNS). It is shown that in optimizing a trajectory it is necessary to take into account the accuracy of track holding in flight which depends on accuracy of the navigation system and external flight path disturbances, e.g. wind. For solving the problem of optimization the authors propose to use the theory of graphs. The technique of constructing a dynamic SNS accuracy field and representing it as a graph was developed. It is proposed that the SNS field could be characterized by geometric dilution of precision changing both in space and in time. Based on the theory of graphs (A-star algorithm) the technique of constructing a trajectory of optimal length under conditions of SNS accuracy variations and external flight path disturbances is proposed. The criterion of optimization based on minimizing the true track is offered. The cost function taking into account the track holding accuracy in navigating by SNS and effects of external flight disturbances is justified. The article represents the results of A-star algorithm application for optimal flight track construction under conditions of SNS accuracy field variation and presence of prohibited zones in the provide zone of airspace
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.