Issue |
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
|
|
---|---|---|
Article Number | 03017 | |
Number of page(s) | 4 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20203203017 | |
Published online | 29 July 2020 |
Web Traffic Time Series Forecasting using ARIMA and LSTM RNN
1 Ramrao Adik Institute of Technology, Nerul
2 Ramrao Adik Institute of Technology, Nerul
3 Ramrao Adik Institute of Technology, Nerul
4 Ramrao Adik Institute of Technology, Nerul
Nowadays, web traffic forecasting is a major problem as this can cause setbacks to the workings of major websites. Time-series forecasting has been a hot topic for research. Predicting future time series values is one of the most difficult problems in the industry. The time series field encompasses many different issues, ranging from inference and analysis to forecasting and classification. Forecasting the network traffic and displaying it in a dashboard that updates in real-time would be the most efficient way to convey the information. Creating a Dashboard would help in monitoring and analyzing real-time data. In this day and age, we are too dependent on Google server but if we want to host a server for large users we could have predicted the number of users from previous years to avoid server breakdown. Time Series forecasting is crucial to multiple domains. ARIMA; LSTM RNN; web traffic; prediction;time series;
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.