Issue |
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 6 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20214003008 | |
Published online | 09 August 2021 |
Voice Feature Extraction for Gender and Emotion Recognition
Department Of Computer Engineering, Pillai College of Engineering, New Panvel - 410 206
* e-mail: madhu.nashipudi@yahoo.in
Voice recognition plays a key function in spoken communication that facilitates identifying the emotions of a person that reflects within the voice. Gender classification through speech is a popular Human Computer Interaction (HCI) method on account that determining gender through computer is hard. This led to the development of a model for "Voice feature extraction for Emotion and Gender Recognition". The speech signal consists of semantic information, speaker information (gender, age, emotional state), accompanied by noise. Females and males have specific vocal traits because of their acoustical and perceptual variations along with a variety of emotions which bring their own specific perceptions. In order to explore this area, feature extraction requires pre-processing of data, which is necessary for increasing the accuracy. The proposed model follows steps such as data extraction, pre-processing using Voice Activity Detector(VAD), feature extraction using Mel-Frequency Cepstral Coefficient(MFCC), feature reduction by Principal Component Analysis(PCA) and Support Vector Machine (SVM) classifier. The proposed combination of techniques produced better results which can be useful in healthcare sector, virtual assistants, security purposes and other fields related to Human Machine Interaction domain.
Key words: Human Computer Interaction(HCI) / Voice Feature Extraction / Gender Recognition / Emotion Recognition / Voice Activity Detector(VAD) / Mel-Frequency Cepstrum (MFC) / Mel-Frequency Cepstral Coe efficient(MFCC) / Principal Component Analysis(PCA) / Support Vector Machine (SVM)
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.