Issue |
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
|
|
---|---|---|
Article Number | 03038 | |
Number of page(s) | 5 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20214003038 | |
Published online | 09 August 2021 |
Cyber Bullying Detection on Social Media using Machine Learning
1,2,3 Student, Department of Computer Engineering, Ramrao Adik Institute of Technology, Nerul
4 Assistant Professor, Department of Computer Engineering, Ramrao Adik Institute of Technology, Nerul
* Corresponding author: adityadesai1703@gmail.com
Usage of internet and social media backgrounds tends in the use of sending, receiving and posting of negative, harmful, false or mean content about another individual which thus means Cyberbullying. Bullying over social media also works the same as threatening, calumny, and chastising the individual. Cyberbullying has led to a severe increase in mental health problems, especially among the young generation. It has resulted in lower self-esteem, increased suicidal ideation. Unless some measure against cyberbullying is taken, self-esteem and mental health issues will affect an entire generation of young adults. Many of the traditional machine learning models have been implemented in the past for the automatic detection of cyberbullying on social media. But these models have not considered all the necessary features that can be used to identify or classify a statement or post as bullying. In this paper, we proposed a model based on various features that should be considered while detecting cyberbullying and implement a few features with the help of a bidirectional deep learning model called BERT.
Key words: Cyberbullying / Social Media / BERT / NLP / Semi-supervised learning / Twitter API
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.