Issue |
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
|
|
---|---|---|
Article Number | 03046 | |
Number of page(s) | 8 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20224403046 | |
Published online | 05 May 2022 |
Comparison of Real-Time Face Detection and Recognition Algorithms
Department of Instrumentation, Ramrao Adik Institute of Technology, D.Y Patil University, Nerul, Navi Mumbai, Maharashtra, 400706
* Corresponding author: reevemascarenhas@gmail.com
With the phenomenal growth of video and image databases, there is a tremendous need for intelligent systems to automatically understand and examine information, as doing so manually is becoming increasingly difficult. The face is important in social interactions because it conveys information. Detecting a person's identity and feelings Humans do not have a great deal of ability to identify. Machines have different faces. As a result, an automatic face detection system is essential.in face recognition, facial expression recognition, head-pose estimation, and human–computer interaction, and so on Face detection is a computer technology that determines the location and size of a person's face. It also creates a digital image of a human face. Face detection has been a standout topic in the science field This paper provides an in-depth examination of the various techniques investigated for face detection in digital images. Various face challenges and applications. This paper also discusses detection. Detection features are also provided. In addition, we hold special discussions on the practical aspects of developing a robust face detection system, and finally. This paper concludes with several promising research directions for the future.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.