Issue |
ITM Web Conf.
Volume 48, 2022
The 4th International Conference on Computing and Wireless Communication Systems (ICCWCS 2022)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 8 | |
Section | Computer Science, Intelligent Systems and Information Technologies | |
DOI | https://doi.org/10.1051/itmconf/20224803007 | |
Published online | 02 September 2022 |
Parallel Hybrid 2-Opt Flower Pollination Algorithm for Real-Time UAV Trajectory Planning on GPU
Royal Military College of Canada, Department of Electrical and Computer Engineering, Canada
* Corresponding author: vincent.roberge@rmc.ca
Abstract. The development of autonomous Unmanned Aerial Vehicles (UAVs) is a priority to many civilian and military organizations. An essential aspect of UAV autonomy is the ability for automatic trajectory planning. In this paper, we use a parallel Flower Pollination Algorithm (FPA) to deal with the problem's complexity and compute feasible and quasi-optimal trajectories for fixed-wing UAVs in complex 3D environments, taking into account the vehicle's flight properties. The global optimization algorithm is
improved with the addition of 2-opt local search providing a significant improvement. The proposed trajectory planner in implemented and parallelized on a multicore processor (CPU) using OpenMP and a Graphics Processing Unit (GPU) using CUDA resulting in a 9.6x and a 68.5x speedup respectively compared to the sequential implementation on CPU.
Index Terms—Flower Pollination Algorithm, Graphics Processing Unit, Parallel Programming, Trajectory Planning, Unmanned Aerial Vehicle.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.