Issue |
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 8 | |
Section | Language & Image Processing | |
DOI | https://doi.org/10.1051/itmconf/20235604006 | |
Published online | 09 August 2023 |
Brain tumor segmentation using UNet-few shot schematic segmentation
2 School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
1 School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
* Corresponding author: nirmalvp.ece@gmail.com
Early finding and determination of a proper therapy technique will build the endurance of people with cancer. A key step in the diagnosis and treatment of brain tumors is accurate and reliable segmentation. Given its uneven shape and opaque borders, gliomas are among the most difficult brain cancers to detect. Because of significant differences in their design, programmed division of glioma brain growths is a fluid topic. Improved UNet-based designs for the automatic segmentation of brain tumors from MRI images are reported in this article. Training semantic division models requires an enormous measure of finely clarified information, making it challenging to quickly acclimatize to unfamiliar classes that don’t meet this requirement. The original Few Shot Segmentation attempts to address this issue but has other flaws. Hence in this paper a generalized Few-Shot Schematic Segmentation is discussed to break down the speculation capacity of at the same time sectioning the original classifications with the base classes and adequate models. A Context-Aware Prototype Learning (CAPL) which is used for improving the performance by utilizing the co-occurrence of earlier information from help tests and progressively enhancing logical data to the classifier, molded on the substance of each question picture. Results reveal the outperformance of the developed model.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.