Issue |
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 10 | |
Section | Software Engineering & Information Technology | |
DOI | https://doi.org/10.1051/itmconf/20235701016 | |
Published online | 10 November 2023 |
Design and Programming for Multicore machines: An Empirical study on time and effort required by programmer
1 Ramaiah Institute of Technology, Bengaluru, INDIA
2 Nitte Meenakshi Institute of Technology, Bengaluru, INDIA
3 Ramaiah Institute of Technology, Bengaluru, India.
* Corresponding author: tr.vinay@gmail.com
As the demand for high-performance computing continues to surge, harnessing the full potential of multicore architectures has become paramount. This paper explores a pragmatic approach to transition from sequential to parallel programming, capitalizing on the computational prowess of modern hardware systems. Recognizing the challenges of enforcing parallelism in early software development phases, we advocate for a focus on the implementation stage, where architects, designers, and developers can seamlessly introduce parallel constructs while preserving software integrity. To facilitate this paradigm shift, we introduce the “SDLC model with Parallel Constructs,” a modified Software Development Life Cycle (SDLC) framework comprising additional phases: “Parallel Constructs” and “Test Parallel Constructs.” This model empowers development teams to integrate parallel computing efficiently, enhancing performance and maintaining a structured development process. Our observations reveal intriguing dynamics. Initially, the single-threaded program outperforms its parallel counterpart for smaller datasets, but as data sizes grow, the parallel version demonstrates superior performance. We underscore the pivotal role of available CPU cores and task partitioning in determining efficiency. Our analysis also evaluates the programmer’s effort, measured by lines of code, needed for the transition. Leveraging OpenMP constructs streamlines this transition, reducing programming complexity.
Key words: Multicore machine / Parallel Programming / Software development life cycle / Effort / Parallel Constructs.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.