Issue |
ITM Web Conf.
Volume 59, 2024
II International Workshop “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-II 2023)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Mathematical Modeling and Applications | |
DOI | https://doi.org/10.1051/itmconf/20245902010 | |
Published online | 25 January 2024 |
Topological optimization of the design of a permanent magnet synchronous motor using a genetic algorithm
Kazan State Power Engineering University,
420066
st. Krasnoselskaya, 51, Kazan
Republic of Tatarstan
Russia
* Corresponding author: tobac15@mail.ru
The operating efficiency of a synchronous motor strongly depends on the design of its component parts, including the arrangement of materials (topology) of the rotor. An important element of the rotor, and at the same time the most expensive, are permanent magnets made of NdFeB material. Topological optimization allows you to reduce the volume of permanent magnets, which will reduce the price of the motor, or switch to cheaper materials, for example, ferrite, while maintaining performance characteristics. A genetic algorithm is used as a search method. And an important feature is that topological optimization is complex; not only electromagnetic parameters are checked, but also the thermal and strength characteristics of a synchronous motor. This test allows us to obtain designs that can be manufactured in practice. The article discusses the developed method of complex topological optimization using a genetic algorithm, optimization results and methods for testing the resulting structures. Optimization allows you to reduce the volume of NdFeB magnets by 2232%, which reduces the cost of the motor by 14–21%, or switch to ferrite magnets, which reduces the cost by 24–33%, while the torque value changes within 2%, which indicates about conservation of torque.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.