Issue |
ITM Web Conf.
Volume 60, 2024
2023 5th International Conference on Advanced Information Science and System (AISS 2023)
|
|
---|---|---|
Article Number | 00017 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/itmconf/20246000017 | |
Published online | 09 January 2024 |
A Subgraph Retrieval Method for Complex Questions Based on Hybrid Semantics and Path Representation
1 Beijing University of Posts and Telecommunications, Beijing, China
2 Beijing University of Posts and Telecommunications, Beijing, China
* Corresponding author: 1036705119@bupt.edu.cn
Current subgraph retrieval methods generally fall into two categories: those that rely on semantic matching, which use only surface-level semantic information of relations and lack flexibility; and those based on personalized PageRank algorithms, which fail to leverage the semantic connection between the relation and the question, rendering them susceptible to noisy data. To address these issues, this paper introduces a novel retrieval model that employs hybrid semantics of relations and path representations. Specifically, hybrid semantics involves merging relational and entity information within a knowledge graph to extract the deep semantics of relations and enhance semantic representation by integrating it with the explicit descriptive text of the relations. Path representation merges the semantics of the current relation with those of preceding ones to form a complete path representation. This representation is then semantically matched with the question to compute a score, which determines whether the relation should form part of the subgraph. We integrated our subgraph retrieval model with the Neural Symbolic Machine (NSM) reasoning model and evaluated it on the publicly available CWQ and WebQSP datasets. The experimental results demonstrate that our method performs exceptionally well on these datasets, validating the efficacy of utilizing deep semantics and path representations for the retrieval of subgraphs in response to complex questions.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.