Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 03022 | |
Number of page(s) | 9 | |
Section | Image Processing and Computer Vision | |
DOI | https://doi.org/10.1051/itmconf/20257003022 | |
Published online | 23 January 2025 |
Comparison of Fully Convolutional Networks and U-Net for Optic Disc and Optic Cup Segmentation
College of Engineering, University of California, Santa Barbara, 93107, United States
Corresponding author: zixiao_jin@ucsb.edu
Glaucoma, the leading cause of irreversible blindness, must be diagnosed early and thus treated in time. However, it has no noticeable symptoms in its early stages and may not be detected easily. This paper aims to compare two well-known convolutional neural network (CNN) structures, namely Fully Convolutional Networks (FCNs) and U-Net for the segmentation of the optic disc (OD) and optic cup (OC) from retinal fundus images which play an important role in glaucoma diagnosis. The performance of both models is assessed using qualitative parameters such as the Dice coefficient, Jaccard index, and cup-to-disc ratio (CDR) error. In our experiment, the U-Net model yields more accurate segmentation results with 0.9601 average pixel accuracy and 0.9255 dice score for OD segmentation, outperforming the FCNs model with 0.9560 average pixel accuracy and 0.9132 dice score for OD segmentation. However, FCNs have a shorter inference time of 0. 0043 seconds against U-net’s 0. 0062 seconds making FCNs more suitable for real-time applications. The restrictions related to this study include biases from using only one dataset acquired from particular imaging devices, dependency on mask-based cropping techniques, and comparison being restricted to two fundamental architectures. This work presents the contribution of the deep learning models in improving glaucoma screening and therefore helping in avoiding blindness.
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.