Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 9 | |
Section | AI and Advanced Applications | |
DOI | https://doi.org/10.1051/itmconf/20257004009 | |
Published online | 23 January 2025 |
Advances in Image Generation Technology: Exploring GANs and MirrorGANs
The Faculty of Arts and Science, Queen’s University, ON K7L 3N6 Kingston, Canada
Corresponding author: 21ls57@queensu.ca
This paper is an in-depth study by delving into the latest in image generation technology, where thesis is focusing on the Generative Adversarial Networks (GANs) and MirrorGANs possibilities. Image Generation is the backbone of visual computing, mostly utilized in intelligent designs. It is for this reason that this research aims at unravelling the theoretical basis and consolidated practices of GANs when it conies to generating both high-quality and semantically consistent imagery. The study will investigate the whole of the image generation process, starting from data preprocessing to the use of GANs to generate images from textual descriptions. The work discussed the relevance as well as the limitations of these technologies from the artistic point of view, medical imaging, and virtual reality. Tire article concludes that the paper sketches the data and experiments that show that the realism and richness hi picture quality are accentuated when GANs and MirrorGANs are incorporated. This suggests the scope of image-generation technology to enhance human-machine collaboration and allow for innovating hi smart tech. Further studies will be geared to enhancing these methods and consequently drawing humanity and machines closer, which hi nun will fuel the ongoing progress in this fast-paced sphere.
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.