Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 04023 | |
Number of page(s) | 8 | |
Section | AI and Advanced Applications | |
DOI | https://doi.org/10.1051/itmconf/20257004023 | |
Published online | 23 January 2025 |
Research and Application of Heart Disease Prediction Model Based on Machine Learning
International College, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
Corresponding author: 2021215000@stu.cqupt.edu.cn
As heart disease has become the leading cause of death worldwide, early and accurate prediction is crucial to help doctors make initial judgments about patients and improve their survival rates. This study aims to improve the accuracy and efficiency of heart disease prediction through Machine learning (ML) methods to help medical diagnosis. A heart disease dataset was used in the study, and multiple ML models were used to analyze multiple key health features, and the model performance was verified through a test set. This paper concludes that Logistic regression and random forests perform well in this task and have high practical value. Future research can stack models and optimize data sources to improve the practical performance of the model. This study provides a basic framework for building an intelligent medical auxiliary diagnosis system, which helps to achieve early prevention and timely judgment of heart disease, thereby improving the overall efficiency of medical services.
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.