Issue |
ITM Web Conf.
Volume 72, 2025
III International Workshop on “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-III 2024)
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 6 | |
Section | Data Mining, Machine Learning and Pattern Recognition | |
DOI | https://doi.org/10.1051/itmconf/20257204009 | |
Published online | 13 February 2025 |
Using R/S analysis for forecasting stock quotes with ARMA and ARIMA methods
Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, 660049, Russian Federation
* Corresponding author: anna-z@mail.ru
The article observes the methods of forecasting time series Autoregressive Moving Average Model (ARMA) and Integrated Autoregressive Moving Average Model (ARIMA). The ARIMA model differs from the ARMA model only in that forecasting is performed not on absolute values of series levels, but on differences of order d, which makes it possible to apply to non-stationary time series. Financial time series are traditionally considered non-stationary. However, the Hurst exponent less than or equal to 0.5 indicates a random or anti-persistent nature of time series. The paper assumes that for random or anti-persistent time series according to Hurst, there is no need to take differences and it is sufficient to apply the ARMA model for forecasting. To test the hypothesis, we carried out forecasts of leading world indices stocks and currency pairs with the Hurst exponent less than or equal to 0.5 for 10 years using the ARMA and ARIMA methods and compared the results using the MAPE metric. According to the ARMA method forecasts, in most cases the error was smaller, that confirmed the initial hypothesis.
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.