Open Access
Issue
ITM Web of Conferences
Volume 1, 2013
ACTIMS 2012 – Activity-Based Modeling & Simulation 2012
Article Number 02003
Number of page(s) 16
Section Innovative Concepts
DOI https://doi.org/10.1051/itmconf/20130102003
Published online 29 November 2013
  1. B.P. Zeigler, H. Praehofer, T.G. Kim. Theory of Modeling and simulation. Second Edition. (Academic Press 2000).
  2. E. Pastor L. Zàrate E. Planas J. Arnaldos Mathematical models and calculation systems for the study of wildland fire behavior. Prog. in Ener. and Comb. Scie. J. 29, 139–153 (2003). [CrossRef]
  3. R.O. Weber. Modelling fire spread through fuel beds, Progr. Energy Combust. Sci. 17 67–82 (1991). [CrossRef]
  4. N. Gobeau X.X. Zhou Evaluation of CFD to predict smoke movement in complex enclosed spaces: Application to three real scenarios: an underground station, an offshore accommodation module and a building under construction. HSL Report 255 (2004).
  5. D. Morvan, J.L. Dupuy, B. Porterie and M. Larini. Multiphase formulation applied to the modelling of fire spread through a forest fuel bed. Combustion Institute. 28, 2803–2809 (2000). [CrossRef]
  6. D. Morvan, S. Méradji, G. Accary. Physical modelling of firespread in Grasslands. Fire Safety Journal 44, 50–61 (2009). [CrossRef]
  7. A.G. McArthur, Weather and grassland fire behavior, Australian Forest and Timber Bureau Leaflet N°100, Canberra, (1966).
  8. M.V. Moreno, B.D. Malamud, E.A. Chuvieco. Wildfire Frequency-Area Statistics in Spain. Procedia Environmental Sciences, 7, 182–187 (2011). [CrossRef]
  9. C. Ordóñez, A. Saavedra, J.R. RodrÍguez-Pérez, F. Castedo-Dorado, E. Covián. Using modelbased geostatistics to predict lightning-caused wildfires. Env. Mod. & Soft. (29) 1, 44–50 (2012). [CrossRef]
  10. S.G. Berjak, J.W. Hearne. An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Eco. Mod. J. 148, 133–151 (2002). [CrossRef]
  11. A. Ohgai Y. Gohnai S. Ikaruga M. Murakami K. Watanabe Cellular Automata Modeling For Fire Spreading As a Tool to Aid Community-Based Planning for Disaster Mitigation. Rec. Adv. In Des. and Dec. Sup. Sys. in Arch. and Urb. Plan. Springer. 193–209 (2004).
  12. A. H. Mathey E. Krcmar S. Dragicevic I. Vertinsky. An object-oriented cellular automata model for forest planning problems. Eco. Mod. J. 212, 359–371 (2008). [CrossRef]
  13. I.G. Georgegoudas G. C. Sirakoulis I. Andreadis Modelling earthquakes activity features using cellular automata. Math. and Comp. Mod. J. 46, 124–137 (2007). [CrossRef]
  14. E. Yacoubi A. El Jai Cellular Automata Modelling and Spreadability. Math. and Comp. Mod. 36 1059–1074 (2002). [CrossRef]
  15. Y.E. Zhang Y. Han T. Zou S. Wang J. Zou A CA-based Information System for Surface Fire Spreading Simulation Proc. of Int. Geo. and Rem. Sens. Symp., USA 5 3484–3487 (2005).
  16. Niloy Ganguly Biplab K Sikdar Andreas Deutsch Georey Canright P Pal Chaudhuri. A survey on cellular automata. Technical report, Centre for High Performance Computing, Dresden University of Technology (2003).
  17. E. Innocenti A. Muzy A. Aiello J.F. Santucci, D.R.C. Hill. Design of a multithreaded parallel model for fire spread. Sim. in Ind. 15 th Eur. Sim. Symp. 104–109 (2003).
  18. A. Muzy J.J. Nutaro B.P. Zeigler P. Coquillard Modeling and simulation of fire spreading through the activity tracking paradigm. Eco. Mod. 219 212–225 (2008). [CrossRef]
  19. G.A. Trunfio Predicting Wildfire Spreading Through a Hexagonal Cellular Automata Model. ACRI’04-Proc. of the Sixth Inter. Conf. on C. A. 3305 385–394 (2004).
  20. A. H. Encinas L.H. Encinas S.H. White A. Martin del Rey G. Sanchez Rodrigez Simulation of forest fire fronts using cellular automata. Adv. in eng. Soft. J. 38 372–378 (2007). [CrossRef]
  21. A.L. Sullivan Wildland surface fire spread modelling, 1990-2007.3: Simulation and mathematical analogue models. Int. Wild. Fire. J. E 18 387–403 (2009). [CrossRef]
  22. S. Bandini, G. Mauri, R. Serra Cellular automata: From a theoretical parallel computational model to its application to complex systems. Para. Comp. J. 27 539–553 (2001). [CrossRef]
  23. Robert J. Krawczyk. Architectural Interpretation of Cellular Automata, Poster presented at NKS, Boston, (2003).
  24. J. Podrouzek. Stochastic Cellular Automata in Dynamic Environmental Modeling: Practical Applications. Elec. Notes in Theor. Comp. Scie. 252, 1 143–156 (2009). [CrossRef]
  25. V. Guinot. Modelling using stochastic, finite state cellular automata: rule inference from continuum models. App. Math. Mod. 26, 6 701–714 (2002). [CrossRef]
  26. Z.L. Krougly, I.F. Creed, D.A. Stanford. A stochastic model for generating disturbance patterns within landscapes. Comp. & Geo. 35, 7 1451–1459 (2009). [CrossRef]
  27. A. Alexandridis, D. Vakalis, C.I. Siettos, G.V. Bafas. A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. App. Math. and Comp. 204, 1 191–201 (2008). [CrossRef]
  28. W. U. Pooch, A. James Wall Discrete Event Simulation: A Practical Approach. (CRC Press, 1993)
  29. I. Karafyllidis A. Thanailakis A model for predicting forest fire spreading using cellular automata. Eco. Mod. J. 99 87–97 (1997). [CrossRef]
  30. A. Muzy D.R.C. Hill Stochastic Modeling Strategies for the Simulation of Large (Spatial) Distributed Systems: Application to Fire Spread. Discrete event modeling and simulation. Theory and applications (CRC PRESS, 2011).
  31. D. Baroudi A discrete dynamical model for flame spread over combustible flat solid surfaces subject to pyrolysis with charring – an application example to upward flame spread. Fire Saf. J. 38 53–84 (2003). [CrossRef]
  32. Python Programming Language – Official Website. http://www.python.org.
  33. Gnuplot – portable command-line driven graphing utility – Official Website. http://www.gnuplot.info.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.