Open Access
ITM Web of Conferences
Volume 1, 2013
ACTIMS 2012 – Activity-Based Modeling & Simulation 2012
Article Number 02003
Number of page(s) 16
Section Innovative Concepts
Published online 29 November 2013
  1. B.P. Zeigler, H. Praehofer, T.G. Kim. Theory of Modeling and simulation. Second Edition. (Academic Press 2000). [Google Scholar]
  2. E. Pastor L. Zàrate E. Planas J. Arnaldos Mathematical models and calculation systems for the study of wildland fire behavior. Prog. in Ener. and Comb. Scie. J. 29, 139–153 (2003). [Google Scholar]
  3. R.O. Weber. Modelling fire spread through fuel beds, Progr. Energy Combust. Sci. 17 67–82 (1991). [CrossRef] [Google Scholar]
  4. N. Gobeau X.X. Zhou Evaluation of CFD to predict smoke movement in complex enclosed spaces: Application to three real scenarios: an underground station, an offshore accommodation module and a building under construction. HSL Report 255 (2004). [Google Scholar]
  5. D. Morvan, J.L. Dupuy, B. Porterie and M. Larini. Multiphase formulation applied to the modelling of fire spread through a forest fuel bed. Combustion Institute. 28, 2803–2809 (2000). [CrossRef] [Google Scholar]
  6. D. Morvan, S. Méradji, G. Accary. Physical modelling of firespread in Grasslands. Fire Safety Journal 44, 50–61 (2009). [CrossRef] [Google Scholar]
  7. A.G. McArthur, Weather and grassland fire behavior, Australian Forest and Timber Bureau Leaflet N°100, Canberra, (1966). [Google Scholar]
  8. M.V. Moreno, B.D. Malamud, E.A. Chuvieco. Wildfire Frequency-Area Statistics in Spain. Procedia Environmental Sciences, 7, 182–187 (2011). [CrossRef] [Google Scholar]
  9. C. Ordóñez, A. Saavedra, J.R. RodrÍguez-Pérez, F. Castedo-Dorado, E. Covián. Using modelbased geostatistics to predict lightning-caused wildfires. Env. Mod. & Soft. (29) 1, 44–50 (2012). [CrossRef] [Google Scholar]
  10. S.G. Berjak, J.W. Hearne. An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Eco. Mod. J. 148, 133–151 (2002). [Google Scholar]
  11. A. Ohgai Y. Gohnai S. Ikaruga M. Murakami K. Watanabe Cellular Automata Modeling For Fire Spreading As a Tool to Aid Community-Based Planning for Disaster Mitigation. Rec. Adv. In Des. and Dec. Sup. Sys. in Arch. and Urb. Plan. Springer. 193–209 (2004). [Google Scholar]
  12. A. H. Mathey E. Krcmar S. Dragicevic I. Vertinsky. An object-oriented cellular automata model for forest planning problems. Eco. Mod. J. 212, 359–371 (2008). [CrossRef] [Google Scholar]
  13. I.G. Georgegoudas G. C. Sirakoulis I. Andreadis Modelling earthquakes activity features using cellular automata. Math. and Comp. Mod. J. 46, 124–137 (2007). [CrossRef] [Google Scholar]
  14. E. Yacoubi A. El Jai Cellular Automata Modelling and Spreadability. Math. and Comp. Mod. 36 1059–1074 (2002). [CrossRef] [Google Scholar]
  15. Y.E. Zhang Y. Han T. Zou S. Wang J. Zou A CA-based Information System for Surface Fire Spreading Simulation Proc. of Int. Geo. and Rem. Sens. Symp., USA 5 3484–3487 (2005). [Google Scholar]
  16. Niloy Ganguly Biplab K Sikdar Andreas Deutsch Georey Canright P Pal Chaudhuri. A survey on cellular automata. Technical report, Centre for High Performance Computing, Dresden University of Technology (2003). [Google Scholar]
  17. E. Innocenti A. Muzy A. Aiello J.F. Santucci, D.R.C. Hill. Design of a multithreaded parallel model for fire spread. Sim. in Ind. 15 th Eur. Sim. Symp. 104–109 (2003). [Google Scholar]
  18. A. Muzy J.J. Nutaro B.P. Zeigler P. Coquillard Modeling and simulation of fire spreading through the activity tracking paradigm. Eco. Mod. 219 212–225 (2008). [CrossRef] [Google Scholar]
  19. G.A. Trunfio Predicting Wildfire Spreading Through a Hexagonal Cellular Automata Model. ACRI’04-Proc. of the Sixth Inter. Conf. on C. A. 3305 385–394 (2004). [Google Scholar]
  20. A. H. Encinas L.H. Encinas S.H. White A. Martin del Rey G. Sanchez Rodrigez Simulation of forest fire fronts using cellular automata. Adv. in eng. Soft. J. 38 372–378 (2007). [CrossRef] [Google Scholar]
  21. A.L. Sullivan Wildland surface fire spread modelling, 1990-2007.3: Simulation and mathematical analogue models. Int. Wild. Fire. J. E 18 387–403 (2009). [CrossRef] [Google Scholar]
  22. S. Bandini, G. Mauri, R. Serra Cellular automata: From a theoretical parallel computational model to its application to complex systems. Para. Comp. J. 27 539–553 (2001). [CrossRef] [Google Scholar]
  23. Robert J. Krawczyk. Architectural Interpretation of Cellular Automata, Poster presented at NKS, Boston, (2003). [Google Scholar]
  24. J. Podrouzek. Stochastic Cellular Automata in Dynamic Environmental Modeling: Practical Applications. Elec. Notes in Theor. Comp. Scie. 252, 1 143–156 (2009). [CrossRef] [Google Scholar]
  25. V. Guinot. Modelling using stochastic, finite state cellular automata: rule inference from continuum models. App. Math. Mod. 26, 6 701–714 (2002). [CrossRef] [Google Scholar]
  26. Z.L. Krougly, I.F. Creed, D.A. Stanford. A stochastic model for generating disturbance patterns within landscapes. Comp. & Geo. 35, 7 1451–1459 (2009). [CrossRef] [Google Scholar]
  27. A. Alexandridis, D. Vakalis, C.I. Siettos, G.V. Bafas. A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. App. Math. and Comp. 204, 1 191–201 (2008). [CrossRef] [Google Scholar]
  28. W. U. Pooch, A. James Wall Discrete Event Simulation: A Practical Approach. (CRC Press, 1993) [Google Scholar]
  29. I. Karafyllidis A. Thanailakis A model for predicting forest fire spreading using cellular automata. Eco. Mod. J. 99 87–97 (1997). [CrossRef] [Google Scholar]
  30. A. Muzy D.R.C. Hill Stochastic Modeling Strategies for the Simulation of Large (Spatial) Distributed Systems: Application to Fire Spread. Discrete event modeling and simulation. Theory and applications (CRC PRESS, 2011). [Google Scholar]
  31. D. Baroudi A discrete dynamical model for flame spread over combustible flat solid surfaces subject to pyrolysis with charring – an application example to upward flame spread. Fire Saf. J. 38 53–84 (2003). [CrossRef] [Google Scholar]
  32. Python Programming Language – Official Website. [Google Scholar]
  33. Gnuplot – portable command-line driven graphing utility – Official Website. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.