Open Access
Issue
ITM Web Conf.
Volume 7, 2016
3rd Annual International Conference on Information Technology and Applications (ITA 2016)
Article Number 09016
Number of page(s) 7
Section Session 9: Computer Science and its Applications
DOI https://doi.org/10.1051/itmconf/20160709016
Published online 21 November 2016
  1. R. Boostani, M. H. Moradi, Evaluation of the forearm EMG signal features for the control of a prosthetic hand, Physiological Measurement, 24(2), 2003: 309-319 [CrossRef] [Google Scholar]
  2. M. A. Oskoei, H. Hu, Myoelectric control systems– A survey, Biomed. Signal Proc. Control, 2(4), 2007: 275–294 [CrossRef] [Google Scholar]
  3. B. Hudgins, P. Parker, R. N. Scott, A new strategy for multifunction myoelectric control, IEEE Trans. Biomed. Eng., 40(1), 1993: 82–94 [CrossRef] [Google Scholar]
  4. Z. Kermani, M. Wheeler, B. C. Badie, R. M. Hashemi, EMG feature evaluation for movement control of upper extremity prostheses, IEEE Trans. Rehabilit. Eng., 3(4), 1995: 324–333 [CrossRef] [Google Scholar]
  5. M. Lei, Z. Wang, Z. Feng. Detecting nonlinearity of action surface EMG signal, Phys. Lett. A, 290 (5) 2001: 297–303 [CrossRef] [Google Scholar]
  6. M. A. Oskoei, H. Hu, Support vector machine based classification scheme for myoelectric control applied to upper limb, IEEE Trans. Biomed. Eng., 55 (8), 2008: 1956–1965 [CrossRef] [Google Scholar]
  7. D. Farina, R. Merletti, Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions, J. Electromyography & Kinesiology, 10(5), 2000: 337–349 [CrossRef] [Google Scholar]
  8. A. Phinyomark Application of wavelet analysis in EMG feature extraction for pattern classificatio. Measurement Science Review, 11, 2011: 45–52 [CrossRef] [Google Scholar]
  9. G. Wang, Z. Yan, X. Hu, H. Xie, Z. Wang, Classification of surface EMG signals using harmonic wavelet packet transform, Institute of physics publishing physiological measurement, 27, 2006:1255–1267 [Google Scholar]
  10. A. Starzacher, B. Rinner, K. N. N. Evaluating, LDA and QDA classification for embedded online feature fusion, International Conference on Sensor Networks and Information Processing, Dec. 2008: 85–90 [Google Scholar]
  11. P. Kaufmann, K. Englehart, M. Platzner, Fluctuating EMG signals: investigating long-term effects of pattern matching algorithms, Annual International Conference of the IEEE: Engineering in Medicine and Biology Society (EMBC), Aug. 2010: 6357–6360 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.