Open Access
ITM Web Conf.
Volume 8, 2016
International Conference on Big Data and its Applications (ICBDA 2016)
Article Number 01009
Number of page(s) 7
Published online 22 November 2016
  1. D. Kornev, A. Tarhanov, Image processing by the GPU via CUDA technology. In: Proceedings of the 40th Regional Youth Conference, series “Problems of the theoretic and applied mathematics”. pp. 406–410 (2009) [Google Scholar]
  2. A. Boreskov, A. Harlanov, Fundamentals of CUDA technology, DMK Press (2010) [Google Scholar]
  3. Nvidia CUDA C programming guide (2015) [Google Scholar]
  4. A.V. Boreskov et al., Parallel computing on GPU. CUDA architectural and programming model. In: Moscow Univ. Proceedings, series “Supercomputer Educations”, p. 336 (2012). [Google Scholar]
  5. L. Dorosinsky, V. Kruglov, N. Papylovskaya, A. Chiryshev, CUDA technology in digital image processing tasks. The success of modern science, vol. 10,pp. 88–98(2011) [Google Scholar]
  6. V. Kruglov, N. Papylovskaya, A. Chiryshev, Benefits of sharing CPU and CUDA-device, Fundamental research, vol. 8 № 2,pp. 296–304 (2014) [Google Scholar]
  7. A. Kruglov, V. Kruglov, A. Chiryshev, U. Chiryshev, Implementation of the resource-intensive machine vision algorithms in real-time systems. Fundamental research, vol. 10 № 12, pp. 2612–2619 (2013) [Google Scholar]
  8. R. Tomakova, Hard-segmented image processing method using multi-layer morphological operators. In: Proceedings of the Southwestern State Univ, vol. 2 pp. 158–164 (2012) [Google Scholar]
  9. V. Chernoysov, A. Savchenko, Morphological moving object detection algorithm on noisy video. International scientific-technical conference Information systems and technologies (2014) [Google Scholar]
  10. F. Kornilov, Search structural imaging differences: Algorithms and methods. Machine Learning and Data Analysis, vol. 1 № 7, pp. 902–919 (2014) [Google Scholar]
  11. T. Volosatova, A. Marchenkov, N. Chichvarin, Research and development of the combined method of detection and identification of moving objects. Information Technology, vol. 12, pp. 24–31 (2013) [Google Scholar]
  12. R. Fernando, D. Kirk, GPU gems: Programming techniques, tips and tricks for real-time graphics (2015). [Google Scholar]
  13. T. R. Halfhill, Parallel processing with CUDA (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.