Open Access
ITM Web Conf.
Volume 11, 2017
2017 International Conference on Information Science and Technology (IST 2017)
Article Number 01009
Number of page(s) 7
Section Session I: Computational Intelligence
Published online 23 May 2017
  1. S. Sivalingam and M. Hovd, “Effect of data compression on controller performance monitoring, “in Control Automation(MED), 2011 19th Mediterranean Conference on, pp.594–599(2011). [Google Scholar]
  2. H. Vedam, V. Venkatasubramanian, M. Bhalodia. A B-spline based method for data compression, process monitoring and diagnosis[J]. Computers & Chemical Engineering, 22(12):S827–S830(1998). [CrossRef] [Google Scholar]
  3. J. Pettersson, P.O. Gutman. Automatic tuning of the window size in the Box Car Back Slope data compression algorithm[J]. Journal of Process Control, 14(4):431–439(2004). [CrossRef] [Google Scholar]
  4. Li X, Qiu H, Zhu Y. Research and Design of Lossy Compression Algorithm in Embedded Real- Time Database[M]. Proceedings of the Second International Conference on Mechatronics and Automatic Control. Springer International Publishing, 1027–1034(2015). [CrossRef] [Google Scholar]
  5. R.S.H. Mah, A.C. Tamhane, S.H. Tung. Process trending with piecewise linear smoothing[J]. Computers & Chemical Engineering, 19(2):129–137(1995). [CrossRef] [Google Scholar]
  6. E.H. Bristol. Swing Door Trending: Adaptive Trend Recording[C]. National Conference Proceeding. Sydey: ISA,749–753(1990). [Google Scholar]
  7. Zhang Wang, Chen Xinchu, Lu Dingxing. Research and Application of Improved Process Data Compression Algorithm-SDT [J]. Industrial Control Computer,08:1–3+6(2009). [Google Scholar]
  8. Zhao Xudong, Ding Jiexiong, Bian Zhiyuan, Guan Lichao, Xie Gang, Du Li, Wang W-ei. Application of improved SDT algorithm in CNC monitoring system[J]. Manufacturing Technology & Machine Tool, 10:155–159(2014). [Google Scholar]
  9. Wang Ju, Chen Xiaojiang, Xing Tianzhang, Fang Ding Yi, Yuan Chang, Data Compression of Wireless Sensor Networks in the Heritage Monitor [J]. Journal of Xidian University, 01:157–162(2012). [Google Scholar]
  10. Yu Songtao, Wang Xiaokun, Zhao Liqiang, Yu Tao, Wang Jianlin. The Improved Al-gorithm for SDT Based on the Dynamic Adjustment of Tolerance[J]. Journal of Beijing U-niversity of Chemical Technology (NATURAL SCIENCE), 03:109–113(2013). [Google Scholar]
  11. Qu Yilin, Wang Wenhai. Automatic Parameter Control SDT Algorithm for Process D-ata Compression[J]. Computer Engineering, 22:40–42(2010). [Google Scholar]
  12. Zhang Jingtao, Wang Hua, Wang Hongan. Accessing and Compressing of Real-time Data[J]. Control and Instruments in Chemical Industry, 03:47–50(2003). [Google Scholar]
  13. Duan Peiyong, Zhang Mei, Tang Tongkui. A Swing Door Trending(SDT) Algorithm and its Application to Compressing Process Data Received by Local Operation Network Nodes [J]. Information and Control, 02:132–135(2002). [Google Scholar]
  14. Ning Hainan. A New Process Data Compression Algorithm Based on SDT Algorithm[J]. Computer Technology and Development, 01:25–28(2010). [Google Scholar]
  15. Zhang Jian, Liu Guangbin. An New Data Compression Based on ISDT Algorithm an-d its Performance Analysis[J]. Fire Control and Command Control, 02:80–82+86(2007). [Google Scholar]
  16. Xing Rui, Qi Qi, Zheng Tao. Improved SDT Algorithm [J]. Computer Engineering a-nd Design,02:515–518+528(2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.