Open Access
ITM Web Conf.
Volume 11, 2017
2017 International Conference on Information Science and Technology (IST 2017)
Article Number 01018
Number of page(s) 10
Section Session I: Computational Intelligence
Published online 23 May 2017
  1. Eng, H. L., and Ma, K. K. (2001). Noise adaptive soft-switching median filter, IEEE Transactions on Image Processing, 10(2), 242251. [Google Scholar]
  2. Yujin, Z., (2006). Image Engineering (I): Image Processing. Second Edition. Japan: Tsinghua University Press. [Google Scholar]
  3. Calderbank A. R., Daubechies I., Sweldens W., Yeo B. L.: Wavelet transforms that map integers to integers. Applied and Computational Harmonics Analysis, 5(3), 332–369. [Google Scholar]
  4. Daubechies, I. Recent results in wavelet applications. Journal of Electronic Imaging 7.4 (1998): 719–724. [CrossRef] [Google Scholar]
  5. Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier analysis and applications, 4(3), 247–269. [Google Scholar]
  6. Davis, G. M., & Nosratinia, A. (1999). Wavelet-based image coding: an overview. In Applied and computational control, signals, and circuits (pp. 369–434). Birkhuser Boston. [CrossRef] [Google Scholar]
  7. Sonka M., Hlavac V., Boyle R.: Image processing, Analysis and Machine Vision. Brooks/Cole Publishing Comp.1999. [Google Scholar]
  8. Haar, A. “Zur Theorie der orthogonalen Funktionen systeme”, Math. Ann. 69, 331–371, 1910. [Google Scholar]
  9. Strang, G. “Wavelet Transforms Ver-sus Fourier Transforms”, Bull. Amer. Math. Soc. 28, 288–305, 1993. [CrossRef] [MathSciNet] [Google Scholar]
  10. Davis G., Strela V., Turcajova R.; Multi wavelet Construction via the Lifting Scheme. Wavelet Analysis and Multi resolution Methods, T. X. He (editor), Lecture Notes in Pure and Applied Mathematics, Marcel Dekker. [Google Scholar]
  11. Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE transactions on Consumer Electronics, 43(1), 1–8. [Google Scholar]
  12. Wang, Y., Chen, Q., & Zhang, B. (1999). Image enhancement based on equal area dualistic subimage histogram equalization method. IEEE Transactions on Consumer Electronics, 45(1), 68–75. [Google Scholar]
  13. Seil, M., Obuz, F., Altay, C., Gencel, Igci, E. Sagol,., & Dicle, O. (2008). The role of dynamic subtraction MRI in detection of hypocellular carcinoma. Diagnostic and Interventional Radiology, 14(4), 2004. [Google Scholar]
  14. Sezgin, M. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146–168. [Google Scholar]
  15. Lim, Y. W., & Lee, S. U. (1990). On the colour image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern recognition, 23(9), 935–952. [CrossRef] [Google Scholar]
  16. Dimililer, K. (2013). Back propagation Neural Network Implementation for Medical Image Compression. Journal of Applied Mathematics. [Google Scholar]
  17. Dimililer K (2012) “Neural network implementation for image compression of X- rays”, Electronic World 118 (1911):26–29. [Google Scholar]
  18. Khashman A., Dimililer K (2005) “Compression criteria for optimum Image compression”, The International Conference on Computer as a Tool, 2005, dx.doi.rog/10.1109/EURCON.2005.1630100. [Google Scholar]
  19. Sonka M., Hlavac V., Boyle R.: Image processing, Analysis and Ma-chine Vision. Brooks/Cole Publishing Comp.1999. [Google Scholar]
  20. Adnan Khashman, Boran Sekeroglu, Kamil Dimililer, “Intelligent Coin Identification System”, Proceedings of the 2006 IEEE International Symposium on Intelligent Control Munich, Germany, (2006). [Google Scholar]
  21. Dimililer, K., & Ilhan A., Effect of image enhancement on mri brain images with neural networks, Proc Comp Sci, 102, 39–44 (2016) [CrossRef] [Google Scholar]
  22. Dimililer, K., Kirsal Ever, Y., & Ratemi H., Intelligent eye tumour detection system, Proc Comp Sci, 102, 325–332 (2016) [Google Scholar]
  23. Dimililer, K., Kirsal Ever, Y., & Ugur B., ILTDS: Intelligent lung tumor detection system on ct images. Int J Intell Syst, 530, 225–235 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.