Open Access
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
Article Number 03047
Number of page(s) 5
Section Session 3: Computer
Published online 05 September 2017
  1. Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J]. Concurrency and Computation: Practice and Experience, 2012, 24(13): 1397–1420. [Google Scholar]
  2. Wang XR, Wang YF. Coordinating power control and performance management for virtualized server clusters. IEEE Trans. on Parallel and Distributed Systems, 2011, 22(2):245−259. [doi: 10.1109/TPDS.2010.91] [CrossRef] [Google Scholar]
  3. Tam D. Facebook processes more than 500 TB of data daily. 2012. [Google Scholar]
  4. [Google Scholar]
  5. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM. Graphlab: A new framework for parallel machine learning. [Google Scholar]
  6. arXiv preprint arXiv:1006.4990. 2010. [Google Scholar]
  7. Wang YF, Wang XR, Chen M, Zhu XY. Partic: Power-Aware response time control for virtualized web servers. IEEE Trans. on Parallel and Distributed Systems, 2011,22(2):323−336. [doi: 10.1109/TPDS.2010.79] [CrossRef] [Google Scholar]
  8. Qian ZP, Chen XW, Kang NX, Chen MC, Yu Y, Moscibroda T, Zhang Z. MadLINQ: Large-Scale distributed matrix computation for the cloud. In: Proc. of the 7th ACM European Conf. on Computer Systems. ACM Press, 2012. 197−210. [doi: 10.1145/2168836. [Google Scholar]
  9. Williams C. What is a green data center. 2011. [Google Scholar]
  10. Kliazovich D, Bouvry P, Khan SU. DENS: Data center energy-efficient network-aware scheduling. Cluster Computing, 2013,16(1): 65−75. [doi: 10.1007/s10586-011-0177-4] [CrossRef] [Google Scholar]
  11. Koomey J. Growth in data center electricity use 2005 to 2010. 2011. [Google Scholar]
  12. Zhou L, Li J, Li F, et al. Energy consumption model and energy efficiency of machine tools: a comprehensive literature review[J]. Journal of Cleaner Production, 2016, 112:3721–3734. [CrossRef] [Google Scholar]
  13. Yuan L, Zhan JF, Sang B, Wang L, Wang HN. PowerTracer: Tracing requests in multi-tier services to save cluster power consumption. Technical Report, Institute of Computing Technoly, Chinese Academy of Sciences, 2010. [Google Scholar]
  14. Chase JS, Anderson DC, Thackar PN, Vahdat AM, Doyle RP. Managing energy and server resources in hosting centers. In: Proc. of the 18th Symp. on Operating Systems Principles. 2001. [doi: 10.1145/502034.502045] [Google Scholar]
  15. Chen G, He WB, Liu J, Nath S, Rigas L, Xiao L, Zhao F. Energy-Aware server provisioning and load dispatching for connectionintensive Internet services. In: Proc. of the NSDI. 2008. 337−350. [Google Scholar]
  16. Chen Y H, Krishna T, Emer J S, et al. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1):1–12. [CrossRef] [Google Scholar]
  17. Demaine E D, Lynch J, Mirano G J, et al. Energy-Efficient Algorithms[J]. 2016:321–332. [Google Scholar]
  18. Lu T, Chen MH, Andrew LL. Simple and effective dynamic provisioning for power-proportional data centers. IEEE Trans. On Parallel and Distributed Systems, 2013,24(6):1161−1171. [doi: 10.1109/TPDS.2012.241] [CrossRef] [Google Scholar]
  19. Chen YP, Ganapathi AS, Fox A, Katz RH, Patterson DA. Statistical workloads for energy efficient mapreduce. Technical Report, No. UCB/EECS-2010-6, University of California at Berkeley, 2010. [Google Scholar]
  20. Lang W, Patel JM. Energy management for mapreduce clusters. Proc. of the VLDB Endowment, 2010,3(1-2):129−139. [CrossRef] [Google Scholar]
  21. Yao Y, Huang L, Sharma A, et al. Data centers power reduction: A two time scale approach for delay tolerant workloads[C]//INFOCOM, 2012 Proceedings IEEE. IEEE, 2012: 1431–1439. [CrossRef] [Google Scholar]
  22. Ye K, Huang D, Jiang X, et al. Virtual machine based energy-efficient data center architecture for cloud computing: a performance perspective[C]//Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing. IEEE Computer Society, 2010: 171–178. [Google Scholar]
  23. Pedram M. Energy-efficient datacenters[J]. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2012, 31(10): 1465–1484. [CrossRef] [Google Scholar]
  24. Gao P X, Curtis A R, Wong B, et al. It’s not easy being green[J]. ACM SIGCOMM Computer Communication Review, 2012, 42(4): 211–222. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.