Open Access
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
Article Number 05002
Number of page(s) 5
Section Session 5: Information Processing Methods and Techniques
Published online 05 September 2017
  1. Tipping M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3):211–244. [Google Scholar]
  2. Vapnik V.N. The Nature of Statistical Learning Theory, 2nd ed.; Springer; New York, NY, USA, 2000. [CrossRef] [Google Scholar]
  3. Son Y, Lee J. Active Learning Using Transductive Sparse Bayesian Regression[J]. Information Sciences, 2016, 374:240–254. [CrossRef] [Google Scholar]
  4. Wu Y, Breaz E, Gao F, et al. Nonlinear Performance Degradation Prediction of Proton Exchange Membrane Fuel Cells Using Relevance Vector Machine[J]. IEEE Transactions on Energy Conversion, 2016:1–1. [Google Scholar]
  5. Lin Y, Xia K, Jiang X, et al. Landslide Susceptibility Mapping Based on Particle Swarm Optimization of Multiple Kernel Relevance Vector Machines: Case of a Low Hill Area in Sichuan Province, China[J]. 2016, 5(10):191. [Google Scholar]
  6. Wang X Y, Liang L L, Li W Y, et al. A new SVM-based relevance feedback image retrieval using probabilistic feature and weighted kernel function ☆[J]. Journal of Visual Communication & Image Representation, 2016, 38:256–275. [CrossRef] [Google Scholar]
  7. Fei S W. Kurtosis prediction of bearing vibration signal based on wavelet packet transform and Cauchy kernel relevance vector regression algorithm[J]. Advances in Mechanical Engineering, 2016, 8(9). [Google Scholar]
  8. Close R, Wilson J, Gader P. A Bayesian approach to localized multi-kernel learning using the relevance vector machine[C]// Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International. IEEE, 2011:1103–1106. [Google Scholar]
  9. Gönen M, Alpaydın E. Localized algorithms for multiple kernel learning[J]. Pattern Recognition, 2013, 46(3):795–807. [CrossRef] [Google Scholar]
  10. Lanckriet G R G, Cristianini N, Bartlett P, et al. Learning the Kernel Matrix with Semi-Definite Programming[J]. Journal of Machine Learning Research, 2002, 5(1):323–330. [Google Scholar]
  11. Cristianini N, Shawe-Taylor J, Elisseeff A, et al. On kernel-target alignment[C]// International Conference on Neural Information Processing Systems: Natural and Synthetic. MIT Press, 2001:367–373. [Google Scholar]
  12. Lei Y. A Relevance Vector Machine Prediction Method Based on Adaptive Multi-kernel Combination and Its Application to Remaining Useful Life Prediction of Machinery[J]. Journal of Mechanical Engineering, 2016, 52(1):87. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Trafalis T B, Malyscheff A M. Optimal selection of the regression kernel matrix with semidefinite programming[M]// Frontiers in Global Optimization. Springer US, 2004:575–584. [CrossRef] [Google Scholar]
  14. Nguyen C H, Ho T B. An efficient kernel matrix evaluation measure[J]. Pattern Recognition, 2008, 41(11):3366–3372. [CrossRef] [Google Scholar]
  15. Marina M A. Data Centering in Feature Space[J]. Ninth International Workshop on Artificial Intelligence & Statistics, 2002. [Google Scholar]
  16. Galvão R K H, Yoneyama T, Rabello T N. Signal Representation by Adaptive Biased Wavelet Expansions[J]. Digital Signal Processing, 1999, 9(4):225–240. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. Fei S W, He Y. Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine[J]. International Journal of Electrical Power & Energy Systems, 2015, 73:625–631. [CrossRef] [Google Scholar]
  18. Zhao C H, Zhang Y, Wang Y L. Relevant Vector Machine Classification of Hyperspectral Image Based on Wavelet Kernel Principal Component Analysis[J]. Dianzi Yu Xinxi Xuebao/journal of Electronics & Information Technology, 2012, 34(8):1905–1910. [CrossRef] [Google Scholar]
  19. Nen M, Alpayd&# Ethem N. Multiple Kernel Learning Algorithms[J]. Journal of Machine Learning Research, 2011, 12:2211–2268. [Google Scholar]
  20. Li D, Wang J, Zhao X, et al. Multiple kernel-based multi-instance learning algorithm for image classification[J]. Journal of Visual Communication & Image Representation, 2014, 25(5):1112–1117. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.