Open Access
Issue |
ITM Web Conf.
Volume 14, 2017
The 12th International Conference Applied Mathematical Programming and Modelling – APMOD 2016
|
|
---|---|---|
Article Number | 00009 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/itmconf/20171400009 | |
Published online | 08 November 2017 |
- A. Asuncion, D.J. Newman, UCI machine learning repository (2010), http://archive.ics.uci.edu/ml [Google Scholar]
- K.W. Bauer, S.G. Alsing, K.A. Greene, Neurocomputing 31, 29 (2000) [CrossRef] [Google Scholar]
- E.H. Han, G. Karypis, V. Kumar, B. Mobasher, Bull. Tech. Committee on Data Eng 21, 15 (1998) [Google Scholar]
- E.R. Hruschk, Feature Selection by Bayesian Networks, in Advances in Artificial Intelligence, edited by A.Y. Tawfik, S.C. Goodwin (Springer, 2004), Vol. 3060 of Lecture Notes in Artificial Intelligence, pp. 370-379 [Google Scholar]
- E.R. Hruschka, E.R. Hruschka, N.F.F. Ebecken, Missing Values Imputation for a Clustering Genetic Algorithm, in Advances in Natural Computation, edited by L.Wang, K. Chen, Y.S. Ong (Springer, 2005), Vol. 3612 of Lecture Notes in Computer Science, pp. 245–254 [CrossRef] [Google Scholar]
- W. Davies, P. Edwards, Distributed Learning: An Agent-Based Approach to Data-Mining, in Machine Learning-95, edited, by, D. Gordon (AAAI Press, 1995) [Google Scholar]
- M. A. Potter, Ph.D. thesis, George Mason University, Fairfax, Virgina (1997) [Google Scholar]
- J. E. Jackson, The American Political Science Review 65, 451 (1971) [CrossRef] [Google Scholar]
- J. Clinton, S. Jackman, D. Rivers, American Political Science Review 98, 355 (2004) [CrossRef] [Google Scholar]
- M. Cohn, ed., Congressional Quarterly Almanac 1984 (Congressional Quarterly, Washington, D. C., 1985) [Google Scholar]
- G. L. Hager, J. C. Talbert, Legislative Studies Quarterly 25, 75 (2000) [CrossRef] [Google Scholar]
- R. Fleisher, The Journal of Politics 55, 327 (1993) [CrossRef] [Google Scholar]
- M. Thomas, American Journal of Political Science 29, 96 (1985) [CrossRef] [Google Scholar]
- D. P. Green, H. L. Kern, Public opinion quarterly 76, 491 (2012) [CrossRef] [Google Scholar]
- G. R. Murray, C. Riley, A. Scime, Public Opinion Quarterly 73, 159 (2009) [CrossRef] [Google Scholar]
- H. J. Einhorn, Public Opinion Quarterly 36, 367 (1972) [CrossRef] [Google Scholar]
- J. Richman, American Political Science Review 105, 151 (2011) [CrossRef] [Google Scholar]
- J. W. Patty, American Journal of Political Science 52, 636 (2008) [CrossRef] [Google Scholar]
- E. G. Juenke, R.R. Preuhs, American Journal of Political Science 56, 705 (2012) [CrossRef] [Google Scholar]
- D. Skarbek, American Political Science Review 105, 702 (2011) [CrossRef] [Google Scholar]
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer Series in Statistics (Springer, New York, 2001) [Google Scholar]
- S. Milborrow, rpart.plot: plot rpart models. An enhanced version of plot.rpart (2011),http://CRAN.R-project.org/package=rpart.plot [Google Scholar]
- K. Poole, J. Lewis, J. Lo, R. Carroll, Journal of Statistical Software 42, 1 (2011) [CrossRef] [EDP Sciences] [Google Scholar]
- K. Poole, J. Lewis, 110th house roll call data, Published online (2010), http://www.voteview.com/house110.htm [Google Scholar]
- S. A. Shull, J. M. Vanderleeuw, Legislative Studies Quarterly pp. 573–582 (1987) [CrossRef] [Google Scholar]
- J. N. Victor, N. Ringe, Legislative Caucuses as Social Networks in the 110th US House of Representatives, in Networks in Political Science Conference, Cambridge, MA (2008) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.