Open Access
Issue
ITM Web Conf.
Volume 16, 2018
AMCSE 2017 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
Article Number 01004
Number of page(s) 6
Section Communications-Systems-Signal Processing
DOI https://doi.org/10.1051/itmconf/20181601004
Published online 09 January 2018
  1. R. Chahar and P. Soni A study of image processing in agriculture for detect the plant diseases. International Journal of Computer Science and Mobile Computing. 4:581-587, (2015). [Google Scholar]
  2. L., Chao, Z., Ji-liu and H.E., Kun, Adaptive edge-detection method based on Canny algorithm. Computer Engineering and Design, 31:4036-4039, (2010). [Google Scholar]
  3. J., Church, Y., Chen, and S., Rice, A Spatial median filter for noise removal in digital images, IEEE Southeast Conf., 618–623, (2008). [Google Scholar]
  4. K. Dimililer, Backpropagation neural network implementation for medical image compression. J. Appl. Math., (2013). [Google Scholar]
  5. K. Dimililer, Neural network implementation for image compression of x-rays. Electronics World. 118:26-29, (2012). [Google Scholar]
  6. K. Dimililer, and A. İlhan, Effect of image enhancement on mri brain images with neural networks, (2016). [Google Scholar]
  7. K., Dimililer, Y. Kirsal Ever, and H. Ratemi, Intelligent eye tumour detection system. Procedia Computer Science, 102:325-332, (2016a). [CrossRef] [Google Scholar]
  8. K. Dimililer, Y. Kirsal Ever, and B. Ugur, ILTDS: Intelligent lung tumor detection system on ct images. Intelligent Systems Technologies and Applications, 225-235, (2016b). [Google Scholar]
  9. K. Dimililer, Y. Kirsal Ever and B. Ugur, Tumor Detection on CT Lung Images using Image Enhancement, The Online Journal of Science and Technology, 7, (2016c). [Google Scholar]
  10. K. Dimililer and S. Zarrouk, ICSPI: Intelligent classification system of pest insects based on image processing and neural arbitration, American Society of Agricultural and Biological Engineers, 33:4, (2017). [Google Scholar]
  11. Y. K. Ever, E. Gemikonakli, and K. Dimililer, Modelling Approaches of Performance Evaluation Of High QoS Of Kerberos Server With Dynamically Renewing Keys Under Pseudo Conditions, The Online Journal of Science and Technology, 7, (2016). [Google Scholar]
  12. H.L, Eng and K.K, Ma, Noise adaptive soft-switching median filter. IEEE Trans Image Process, 10:242-251, (2001). [CrossRef] [Google Scholar]
  13. Gonzalez and Woods, Digital Image Processing, Second Edition, Prentice Hall,108-120, (2002). [Google Scholar]
  14. Z., Jian-jun, and L. Jing, A surface crack edge detection algorithm based on improved Sobel operator. Journal of hefei university of technology, 34:845-847,960, (2011). [Google Scholar]
  15. A. Khashman and K. Dimililer, Medical radiographs compression using neural networks and haar wavelet, IEEE EUROCON'09, 1448-1453, (2009). [Google Scholar]
  16. Y. Kim, Contrast enhancement using brightness preserving bi-histogram equalization, IEEE Trans. Consum. Electron. 43:1–8, (1997). [CrossRef] [MathSciNet] [Google Scholar]
  17. N., Larios, Deng, H., Zhang, W., Sarpola, M., Yuen, J., Paasch, R., Moldenke, A., Lytle, D. A., Correa, S. R., Mortensen, E. N., Shapiro, L. G., and Dietteric, T.G., Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects, Machine Vision and Applications, Springer, 19:105-123, (2008). [Google Scholar]
  18. T.Z. Lee, Edge detection analysis. Int. J. Comp. Sci., 5:1-25, (2012). [Google Scholar]
  19. I., Levner and H. Zhangm. Classification driven watershed segmentation, IEEE Transactions on image Processing, 16, (2007). [Google Scholar]
  20. A. F. J., Lopez, Salamanca, J. M., Medina, M. J. Q., and Perez, O. E. A. Crops diagnosis using digital image processing and precision agriculture technologies., INGE CUC. 11:63-71, (2015). [Google Scholar]
  21. A. Mittal and, S.K., Dubey Analysis of rheumatoid arthritis through image processing. IJCSI International Journal of Computer Science. 9, (2012). [Google Scholar]
  22. R.G., Mundada, and, V. V. Gohokar, Detection and classification of pests in greenhouse using image processing, IOSR Journal of Electronics and Communication Engineering. 5:57-63. Procedia Computer Science, 102:39-44, (2013). [Google Scholar]
  23. J. K., Patil, and R. Kumar. Advances in image processing for detection of plant diseases, Journal of Advanced Bio information Applications and Research, 135-141, (2011). [Google Scholar]
  24. L. P. Saxena and L. J. Armstrong, A survey of image processing techniques for agriculture. Proceedings of AFITA 2014, 406-418, (2014). [Google Scholar]
  25. L. Shapiro and G, Stockman, Image Segmentation. (1st ed.), Prentice Hall, Washington, pp. 200-280, (2000)‥ [Google Scholar]
  26. The nature pictures, available at: [http://www.naturespic.com/NewZealand/result_keyword.asp?imagekeywords=Insects%2Fspiders&offset=60]. [Google Scholar]
  27. L. G., Thiago, Souza, E.S., Mapa, K.S., and David M. Application of complex networks for automatic classification of damaging agents in soya bean leaflets. Proceeding of the 18th IEEE International Conference, 1065 – 1068, (2005). [Google Scholar]
  28. Y., Wan, Chen, Q., and Zhang, B. M. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron.,45,68-75, (1999). [CrossRef] [MathSciNet] [Google Scholar]
  29. K. Dimililer, A. Hesri and Y. Kirsal Ever, Lung Lesion Segmentation using Gaussian Filter and Discrete Wavelet Transform, The Journal of ITM Web of Conferences, EDP Sciences, ISSN 2271-2097, 11, (2017). [Google Scholar]
  30. I. J. Bush and K. Dimililer, Static and Dynamic Pedestrian Detection Algorithm for Visual Based Driver Assistive System, The Journal of ITM Web of Conferences, EDP Sciences, ISSN 2271-2097, 9, (2017). [Google Scholar]
  31. K. Dimililer, A. Hesri and Y. Kirsal Ever, Lung Lesion Segmentation using Gaussian Filter and Discrete Wavelet Transform, The 2017 International Conference on Information Science and Technology, 11, (2017). [Google Scholar]
  32. I. J. Bush and K. Dimililer, Static and Dynamic Pedestrian Detection Algorithm for Visual Based Driver Assistive System, The 2016 International Conference Applied Maths, Computational Science and Systems Engineering (AMCSE2016), 9, (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.