Open Access
ITM Web Conf.
Volume 22, 2018
The Third International Conference on Computational Mathematics and Engineering Sciences (CMES2018)
Article Number 01055
Number of page(s) 5
Published online 17 October 2018
  1. V. Aslantaş, Ş. Özer, S. Öztürk, “Improving the performance of DCT-based fragile watermarking using intelligent optimization algorithms”, Optics Communications, vol.282, pp.2806-2817, (2009). [CrossRef] [Google Scholar]
  2. M. D. Ansari, S. P. Ghrera, V. Tyagi, “Pixel-Based Image Forgery Detection A Review”, IETE Journal of Education, 55(1), 40-46, (2014). [CrossRef] [Google Scholar]
  3. H. Farid, “A survey of image forgery detection”, IEEE Signal Processing Magazine, 26(2), 16-25, (2009). [CrossRef] [Google Scholar]
  4. M.K. Tohnson, H. Farid, “Metric measurements on a plane from single image” Dept. Comput.Sci., Darmouth College, Tech. Rep. TR2006-576, (2006). [Google Scholar]
  5. J. Fridrich, D. Soukal, J. Luka, “Detection of copy-move forgery in digital iamges”, Digital Forensic Research Workshop, pp.6-8, (2003). [Google Scholar]
  6. N.K. Gill, R. Garg, A. Doger, “A review paper on digital image forgery detection techniques”, 8th ICCCNT 2017, pp.1-7, (2017). [Google Scholar]
  7. E. Ardizzone, A. Bruno, G. Mazzola, “Copy-move forgery detection via texture description” ACM Workshop on multimedia in forensics, security and intelligence, pp.59-64, (2010). [Google Scholar]
  8. B. Soloria, A. K. Nandi, “Automated detection and localization of duplicated regions affected by reflection, rotation and scaling in image forensics”, International Journal of Signal Processing, pp.1759-1770, (2011). [CrossRef] [Google Scholar]
  9. A. Makandar, B. Halalli, “A review on preprocessing techniques for digital mammography images”, International Journal of Computer Applications, pp.0875-887, (2015). [Google Scholar]
  10. I. Amerini, L. Ballan, Caldelli, Caldelli, A. D. Bimbo, “A SIFT-based forensic method for copy-move attack detection and transformation recovery”. IEEE Transactions on Information Forensics and Security, 6(3), 1099-1110, (2011). [CrossRef] [Google Scholar]
  11. S. Ryu, M. Lee, H. Lee, “Detection of Copy-Rotate-Move Forgery using Zernike Moments,” in Information Hiding Conference, Jun. 2010, pp. 51-65. (2010). [CrossRef] [Google Scholar]
  12. S. Bravo-Solorio, A. K. Nandi, “Exposing Duplicated Regions Affected by Reflection, Rotation and Scaling,” in International Conference on Acoustics, Speech and Signal Processing, May 2011, pp. 1880-1883. (2011). [Google Scholar]
  13. C. M. Pun, X. C. Yuan, X.L. Bi. “Image Forgery Detection Using Adaptive Over-Segmentation and Feature Points Matching.” IEEE, (2015). [Google Scholar]
  14. L. Jian. “Segmentation-based Image Copy-move Forgery Detection Scheme.” IET, (2015). [Google Scholar]
  15. J.C. Lee, C.P. Chang, W.K. Chen. “Detection of copy-move image forgery using histogram of orientated gradients. Information Sciences, Informatics and Computer Science Intelligent Systems Applications, 3(21), 250-262, (2015). [Google Scholar]
  16. S. Kumar, J. V. Desai, S. Mukherjee, “Copy Move Forgery Detection in Contrast Variant Environment using Binary DCT Vectors”. International Journal of Image, Graphics and Signal Processing (IJIGSP), 7(6), 38-44, (2015). [CrossRef] [Google Scholar]
  17. J. Zhao, J. Guo, “Passive Forensics for Copy-Move Image Forgery Using a Method Based on DCT and SVD”. ForensicSci.Int. 233, 158-166. (2015). [CrossRef] [Google Scholar]
  18. B. Yang, X. Sun, X. Chen, J. Zhang, X. Li, “An Efficient Forensic Method for Copy-Move Forgery Detection Based on DWT-FWHT”, RadioEng. 22, 1098-1105. (2013). [Google Scholar]
  19. E. Silva, T. Carvalho, A. Ferreira, A. Rocha, “Going Deeper into Copy-Move Forgery Detection: Exploring Image Tell tales via multi-scale analysis and voting processes. J Visual Commun Image Represent.;29:16-32, (2015). [CrossRef] [Google Scholar]
  20. J. Chen, X. Kang, Y. Liu, ZJ. Wang, “Median Filtering Forensics Based on Convolutional Neural Networks. IEEE Signal Process Lett. 22:1849-1853, (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.