Open Access
Issue |
ITM Web Conf.
Volume 23, 2018
XLVIII Seminar of Applied Mathematics
|
|
---|---|---|
Article Number | 00037 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/itmconf/20182300037 | |
Published online | 07 November 2018 |
- S. Węglarczyk., M. Kulig, Wiad. IMGW XIV(XLV), Z.2, 59-69 (2001) [Google Scholar]
- H.A. Sturges, J. Amer. Statist. Assoc. 21, 65-66 (1926) [Google Scholar]
- C. E. P. Brooks, N. Carruthers, Handbook of statistical methods in meteorology (HM Stationary Office, London, 1953) [Google Scholar]
- D.W. Scott, Biometrica 66, 605-610 (1979) [Google Scholar]
- D. Freedman, P. Diaconis, Zeit. Wahr. ver. Geb. 57(4), 453-476 (1981) [Google Scholar]
- D. P. Doane, American Statistician 30(4), 181-183 (1976) [Google Scholar]
- M. Rosenblatt, Annals of Mathematical Statistics 27, 832-837 (1956) [CrossRef] [MathSciNet] [Google Scholar]
- E. Parzen, Annals of Mathematical Statistics 33, 1065-1076 (1962) [CrossRef] [MathSciNet] [Google Scholar]
- A. Bowman, Journal of Stat. Comp. Simul. 21, 313-327 (1985) [CrossRef] [Google Scholar]
- G.R. Terrel, D.W. Scott, Journal of the American Statistical Association 80(389), 209-214 (1985) [CrossRef] [Google Scholar]
- B.W. Silverman, Density estimation for statistics and data analysis (Chapman and Hall, London, 1986) [Google Scholar]
- L. Devroye, Annales de l’Institut Henri Poincaré 25, 533-580 (1989) [Google Scholar]
- G.R. Terrel, Journal of the American Statistical Association 85, 470-477 (1990) [CrossRef] [Google Scholar]
- S.J. Sheather, Computational Statistics 7, 225-250 (1992) [Google Scholar]
- J.S. Marron, M. P. Wand, Annals of Statistics 20, 712-736 (1992) [CrossRef] [MathSciNet] [Google Scholar]
- L. Devroye, Statistics and Probability Letters 20, 183-188 (1994) [CrossRef] [Google Scholar]
- L. Devroye, A. Krzyżak, Journal of Multivariate Analysis 82, 88-110 (2002) [CrossRef] [Google Scholar]
- S.X. Chen, Annals Of The Institute of Statistical Mathematics 52(3), 471-480 (2000) [Google Scholar]
- O. Scaillet, Density estimation using inverse and reciprocal inverse gaussian kernels (IRES Discussion Paper 17, Université Catolique de Louvain, 2001) [Google Scholar]
- X. Jin, J. Kawczak, Annals of Economics and Finance 4, 103-124 (2003) [Google Scholar]
- P. Hall, J.S. Marron, The Annals of Statistics 15(1), 163-181 (1987) [CrossRef] [Google Scholar]
- B. Fal, E. Bogdanowicz, W. Czernuszenko, I. Dobrzyńska, A. Koczyńska, Przepływy charakterystyczne głównych rzek polskich w latach 1951-1995 (in Polish: Characteristics flows of main rivers in Poland in 1951-1995) (Materiały Badawcze, Seria: Hydrologia i Oceanologia 26, Instytut Meteorologii i Gospodarki Wodnej, Warszawa, 2000) [Google Scholar]
- D. W. Scott, Multivariate Density Estimation, Theory, Practice, and Visualization (John Wiley and Sons, Inc., 1992) [CrossRef] [Google Scholar]
- W. Härdle, M. Müller, S. Sperlich, A. Werwatz, Nonparametric and Semiparametric Models (Springer, 2004) [CrossRef] [Google Scholar]
- T. Ledl, Austrian Journal of Statistics 33(3), 267-279 (2004) [CrossRef] [Google Scholar]
- S.J. Sheather, Statist. Sci. 19(4), 588-597 (2004) [Google Scholar]
- S.R. Sain, Adaptive kernel density estimation, (PhD diss., Rice University, http://hdl.handle.net/1911/16743, 1994, accessed June 2018) [Google Scholar]
- J.S. Marron, D. Nolan, Statistics and Probability Letters 7, 195-199 (1989) [CrossRef] [Google Scholar]
- A. Bowman, P. Hall, T. Prvan, Biometrika 85(4), 799-808 (1998) [CrossRef] [Google Scholar]
- B.A. Turlach, Bandwidth selection in kernel density estimation: A Review (Discussion Paper, C.O.R.E. and Institut de Statistique, Université Catolique de Louvain-la-Neuve, Belgium, 1993) [Google Scholar]
- W. Feluch, Wybrane metody jądrowej estymacji funkcji gęstości prawdopodobieństwa i regresji w hydrologii (in Polish: Selected methods for kernel estimation of probability density function and regression in hydrology) (Prace Naukowe Poli-techniki Warszawskiej 15, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1994) [Google Scholar]
- E. Choi, P. Hall, Biometrika 86(4), 941-947 (1999) [CrossRef] [Google Scholar]
- P. Hall, S.J. Sheather, M.C. Jones, J.S. Marron, Biometrika 78(2), 263-269 (1991) [CrossRef] [Google Scholar]
- S.T. Chiu, Statistica Sinica 6, 129-145 (1996) [Google Scholar]
- S.T. Chiu, The Annals of Statistics 19(4), 1883-1905 (1991) [CrossRef] [Google Scholar]
- S.T. Chiu, Biometrika 79(4), 771-782 (1992) [CrossRef] [Google Scholar]
- M. Rudemo, Scand. Journal of Statistics 9, 65-78 (1982) [Google Scholar]
- A. Bowman, Biometrica 71, 353-360 (1984) [Google Scholar]
- P. Hall, J.S. Marron, Journal of the Royal Statistical Society B(53), 245-252 (1991) [Google Scholar]
- A. Michalski, Meteorology Hydrology and Water Management 4(1), 40-46 (2016) [Google Scholar]
- Roczniki Hydrologiczne 1984-2015, IMGW-PIB (Institute of Meteorology and Water Management National Research Institute), CD-ROM [Google Scholar]
- IMGW-PIB (Institute of Meteorology and Water Management National Research Institute) [Google Scholar]
- www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/oxforddata.txt (accessed May 2018) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.