Open Access
ITM Web Conf.
Volume 24, 2019
AMCSE 2018 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
Article Number 01010
Number of page(s) 9
Section Communications-Systems-Signal Processing
Published online 01 February 2019
  1. The World Bank, “Average mobile cellular subscriptions,” [Online]. Available: [Accessed: 01-Nov-2018]. . [Google Scholar]
  2. A. Guillen-Perez and M.-D. Cano, “A WiFi-based method to count and locate pedestrians in urban traffic scenarios,” in WiMob 2018, 2018, vol. 02230. [Google Scholar]
  3. R. Sanchez-Iborra and M.-D. Cano, “On the similarities between urban traffic management and communication networks: Application of the random early detection algorithm for self-regulating intersections,” IEEE Intell. Transp. Syst. Mag., 9, 4 (2017). [CrossRef] [Google Scholar]
  4., NumPy Website. (2018). Available at: [Accessed 23 Oct. 2018]. [Google Scholar]
  5. E. Jones, T. Oliphant, P. Peterson, and others, “SciPy: Open source scientific tools for Python,” Computing in Science and Engineering, 9, 10–20 (2007). [Google Scholar]
  6. W. McKinney and P. D. Team, “Pandas,” Pandas Powerful Python Data Anal. Toolkit, 1625, (2015). [Google Scholar]
  7. A. E. C. Redondi and M. Cesana, “Building up knowledge through passive WiFi probes,” Comput. Commun., 117, 1–12 (2018). [CrossRef] [Google Scholar]
  8. E. Cianca, M. De Sanctis, and S. Di Domenico, “Radios as Sensors,” IEEE Internet Things J., 4, 363–373 (2017). [CrossRef] [Google Scholar]
  9. Y. Yuan, “Crowd Monitoring Using Mobile Phones,” in Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, 261–264 (2014) [Google Scholar]
  10. L. Schauer, M. Werner, and P. Marcus, “Estimating Crowd Densities and Pedestrian Flows Using Wi-Fi and Bluetooth,” in MOBIQUITOUS, 1–8 (2017). [Google Scholar]
  11. W. Pattanusorn, I. Nilkhamhang, S. Kittipiyakul, K. Ekkachai, and A. Takahashi, “Passenger estimation system using Wi-Fi probe request,” 7th Int. Conf. Inf. Commun. Technol. Embed. Syst. 2016, IC-ICTES 2016, 2016, 67–72 (2016). [Google Scholar]
  12. E. Vattapparamban, B. S. Çiftler, I. Güvenç, K. Akkaya, and A. Kadri, “Indoor occupancy tracking in smart buildings using passive sniffing of probe requests,” 2016 IEEE Int. Conf. Commun. Work. ICC 2016, 38–44, (2016). [CrossRef] [Google Scholar]
  13. L. Sun, S. Chen, Z. Zheng, and L. Xu, “Mobile Device Passive Localization based on IEEE 802 . 11 Probe Request Frames,”. 2017, 1, (2017). [Google Scholar]
  14. A.-C. Petre, C. Chilipirea, M. Baratchi, C. Dobre, and M. Van Steen, “WiFi Tracking of Pedestrian behavior,” in Smart Sensors Networks, Elsevier, 309–337 (2017). [CrossRef] [Google Scholar]
  15. Y. Fukuzaki, N. Nishio, M. Mochizuki, and K. Murao, “A pedestrian flow analysis system using Wi-Fi packet sensors to a real environment,” Proc. 2014 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. Adjun. Publ. UbiComp ’14 Adjun., 721–730 (2014). [Google Scholar]
  16. V. Acuna, A. Kumbhar, E. Vattapparamban, F. Rajabli, and I. Güvenç, “Localization of WiFi devices using probe requests captured at unmanned aerial vehicles,” IEEE Wirel. Commun. Netw. Conf. WCNC, (2017). [Google Scholar]
  17. A. B. M. Musa and J. Eriksson, “Tracking unmodified smartphones using wi-fi monitors,” Proc. 10th ACM Conf. Embed. Netw. Sens. Syst. SenSys ’12, 281 (2012). [Google Scholar]
  18. A. Basalamah, “Crowd Mobility Analysis using WiFi Sniffers,” Int. J. Adv. Comput. Sci. Appl., 7, 374–378 (2016). [Google Scholar]
  19. O. Kramer, “Scikit-Learn,” in Machine Learning for Evolution Strategies, (2016). [Google Scholar]
  20. S. H. Walker and D. B. Duncan, “Estimation of the probability of an event as a function of several independent variables.,” Biometrika, 54, 167–179 (1967). [CrossRef] [PubMed] [Google Scholar]
  21. C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., 20, 273–297 (1995). [Google Scholar]
  22. I. Rish, “An empirical study of the naive Bayes classifier,” in Workshop on empirical methods in artificial intelligence, 22230, pp. 41–46 (2001). [Google Scholar]
  23. T. K. Ho, “Random Decision Forests Tin Kam Ho Perceptron training,” in Proceedings of the 3rd International Conference on Document Analysis and Recognition, 278–282 (1995). [Google Scholar]
  24. B. W. Silverman and M. C. Jones, “E. Fix and J.L. Hodges (1951): An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation: Commentary on Fix and Hodges (1951),” Int. Stat. Rev., 57, 233–238 (1989). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.