Open Access
ITM Web Conf.
Volume 24, 2019
AMCSE 2018 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
Article Number 02012
Number of page(s) 5
Section Computers
Published online 01 February 2019
  1. A. von Meier. Electric power systems. A conceptual introduction (John Wiley & Sons, Inc., Hoboken, New Jersey, 2006) [CrossRef] [Google Scholar]
  2. P.J. Antsaklis, A brief introduction to the theory and applications of hybrid systems, Proceedings of the IEEE 88, No.7, pp. 879–887 (2000) [CrossRef] [Google Scholar]
  3. A. J. van der Schaft, H. Schumacher, An introduction to hybrid dynamical systems (Lecture Notes in Control and Information Sciences 251, 2000) [CrossRef] [Google Scholar]
  4. J.M. Esposito, Simulation and control of hybrid systems with applications to mobile robotics. Dissertation (USA, 2002) [Google Scholar]
  5. E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems ( Springer, 2011) [Google Scholar]
  6. T. Yu. Fomina, Razrabotka algoritma raschjota pjerjehodnyh protsjessov slozhnyh rjegulirujemyh EES: dis... kand. tehn. nauk (Development of an algorithm for simulating transients in complex controlled electric power systems. Candidate of technical sciences dissertation) (Russia, 2014) (in Russian) [Google Scholar]
  7. V.A. Venikov, Transient phenomena in electrical power systems (Pergamon press, 1964) [Google Scholar]
  8. Yu. V. Shornikov, D. N. Dostovalov, Features of the ISMA modeling and simulation environment, Proceedings of International multi-conference on engineering, computer and information sciences (SIBIRCON), p. 332–337 (2017) [CrossRef] [Google Scholar]
  9. J.M. Esposito, V. Kumar, A state event detection algorithm for numerically simulating hybrid systems with model singularities, ACM Transactions on Modeling and Computer Simulation, vol. 17, iss. 1, p. 1–22 (2007) [CrossRef] [Google Scholar]
  10. C.W. Gear, O. Osterby, Solving ordinary differential equations with discontinuities, ACM transactions on mathematical software 10(1), p. 23–44 (1984) [CrossRef] [Google Scholar]
  11. L.F. Shampine, I. Gladwell, R.W. Brankin, Reliable solution of special event location problems for ODEs, ACM transactions on Mathematical Software 17(1), p. 11–25 (1991) [CrossRef] [Google Scholar]
  12. E. A. Novikov, M. A. Rybkov, Application of explicit methods with extended stability regions for solving stiff problems, Mathematics & Physics 9 (2), p. 209–219 (2016) [Google Scholar]
  13. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer, 2011). [Google Scholar]
  14. F.E. Cellier, E. Kofman, Continuous system simulation (Springer, 2006) [Google Scholar]
  15. Yu.V. Shornikov, B.U. Uatay, E.A. Novikov, Methods for Solution of Stiff Problems (Kazakh-British Technical University, 2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.