Open Access
Issue
ITM Web Conf.
Volume 25, 2019
2018 3rd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2018)
Article Number 01012
Number of page(s) 6
Section Intelligent Computing
DOI https://doi.org/10.1051/itmconf/20192501012
Published online 01 February 2019
  1. L. W. Beineke, R. C. Vandell, Decycling graphs, J. Graph Theory, 25, 59-77, (1997). [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Niven, H. S. Zuckerman, An Introduction to the Theory of Numbers (5th ed.).John Wiley and Sons, New York, (1991). [Google Scholar]
  3. I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, New bounds on the size of the minimum feedback vertex set in meshes and butterflies. Information Processing Letters, 83, 75-80, (2002). [CrossRef] [Google Scholar]
  4. P. Festa, P. M. Pardalos, M. G. C. Resende, Feedback set problems. Handbook of Combinatorial Optimization (D.-Z. Du, P.M. Pardalos eds.), Vol. A, Kluwer, Dordrecht, pp. 209, (1999). [CrossRef] [Google Scholar]
  5. V. Bafna, P. Berman, T. Fujito, A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Mathematics, 12, 289-297, (1999). [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Bau, L. W. Beineke, Z. Liu, G. Du, R. C. Vandell, Decycling cubes and grids. Utilitas Math., 59, 129-137, (2001). [Google Scholar]
  7. R. Bar-Yehuda, D. Geiger, J. S. Naor, R. M. Roth, Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput., 27, 942-959, (1998). [CrossRef] [Google Scholar]
  8. R. Focardi, F. L. Luccio, D. Peleg, Feedback vertex set in hypercubes. Information Processing Letters, 76, 1-5, (2000). [CrossRef] [Google Scholar]
  9. Y. D. Liang, On the feedback vertex set in permutation graphs. Information Processing Letters, 52, 123-129, (1994). [CrossRef] [Google Scholar]
  10. F. L. Luccio, Almost exact minimum feedback vertex set in meshes and butterflies. Information Processing Letters, 66, 59-64, (1998). [CrossRef] [Google Scholar]
  11. G. W. Smith, Jr. and R. B. Walford, The identification of a minimal feedback vertex set of a directed graph. IEEE Trans. Circuits and Systems, 22, 9-15, (1975). [CrossRef] [Google Scholar]
  12. C.-C. Wang, E. L. Lloyd, M. L. Soffa, Feedback vertex sets and cyclically reducible graphs. J. Assoc. Comput. Mach., 32, 296-313, (1985). [CrossRef] [Google Scholar]
  13. F.-H. Wang, C.-J. Hsu, J.-C. Tsai, Minimal feedback vertex sets in directed split stars. Networks, 45, 218-223, (2005). [CrossRef] [Google Scholar]
  14. M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, San Francisco, CA, (1979). [Google Scholar]
  15. Mohammad Ghebleh, The circular chromatic index of Goldberg snarks. Discrete Mathematics, 307, 3220-3225, (2007). [CrossRef] [Google Scholar]
  16. A. Cavicchioli, T.E. Murgolo, B. Ruini and F. Spaggiari. Special Classes of Snarks. Acta Applicandae Mathematicae, 76, 57-88, (2003). [CrossRef] [Google Scholar]
  17. A. Cavicchioli, M. Meschiari, B. Ruini, and F. Spaggiari. A Survey on Snarks and New Results: Products, Reducibility and a Computer Search. Journal of Graph Theory, 28(2), 57-86, (1998). [CrossRef] [Google Scholar]
  18. M. Abreu, D. Labbate, R. Rizzi, J. Sheehan, Odd 2factored snarks. European Journal of Combinatorics, 36, 460-472, (2014). [CrossRef] [Google Scholar]
  19. John J. Watrins, Snarks. Annals New York Academy of Sciences, 576, 606-622, (2006). [Google Scholar]
  20. L. W. Beineke, R. C. Vandell, Decycling graphs, J. Graph Theory, 25, 59-77, (1997). [CrossRef] [MathSciNet] [Google Scholar]
  21. S.J. Zhang, X.R. Xu, C. Yin, N. Cao, Y.S. Yang, Feedback Numbers of Augmented Cubes AQn, Utilitas Mathematica, 97, 183-192, (2015) [Google Scholar]
  22. S.J. Zhang, X.R. Xu, C. Yin, et al. The feedback number of Knödel graph W3, n, ARS Combinatoria, 140, 397-409, (2018). [Google Scholar]
  23. X.R. Xu,C. Yin,S.J. Zhang, et al. Improved Feedback Vertex sets in Kautz Digraph Kautz Digraph K(d, n),CIS 2014, 161-165, (2014). [Google Scholar]
  24. X.R. Xu, S.P. Dino, H.F. Zhang, et al. Decycling number of crossed cubes CQn, CIS 2017, 145-150, (2017) [Google Scholar]
  25. Forbes A.D.. Snark Design. Utilitas Mathematica, 107,167-192, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.