Open Access
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
Article Number 03024
Number of page(s) 7
Section Computing
Published online 29 July 2020
  1. P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, R.L. Ball, C. Langlotz, K. Shpanskaya, M.P. Lungren, A.Y. Ng. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv:1711.05225v3, (2017). [Google Scholar]
  2. P. Kumar, M. Grewal, M.M. Srivastava. Boosted Cascaded Convnets for Multilabel Classification of Thoracic Diseases in Chest Radiographs. arXiv:1711.08760v1, (2017). [Google Scholar]
  3. X. Wang, Y. Peng, L. Leu, R.M. Summers . TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays. arXiv:1801.04334v, (2018). [Google Scholar]
  4. Q. Guan, Y. Huang, Z. Zhong, Z. Zheng, L. Zheng, Y. Yang. Diagnose like a Radiologist: Attention Guided Convolutional Neural Network for Thorax Disease Classification. arXiv:1801.09927v1, (2018). [Google Scholar]
  5. I. Allaouzi, M.B. Ahmed.. A novel approach for multi-label Chest X-Ray classification of common Thorax Diseases. IEEEAccess. [Google Scholar]
  6. M.T. Islam, M.A. Aowal, A.T. Minhaz, K. Ashraf. Abnormality Detection and Localization in Chest X-Rays using Deep Convolutional Neural Networks. arXiv:1705.09850v3, (2017) [Google Scholar]
  7. X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases. arXiv:1705.02315, (2017) [Google Scholar]
  8. J. Irwin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, J.Seekins, D.A. Mong, S.S. Halabi, J.K. Sandberg, R. Jones, D.B. Larson, C.P. Langlotz, B.N. Patel, M.P. Lungren, A.Y. Ng . CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. arXiv:1901.07035v1, (2019). [Google Scholar]
  9. J.M Carrillo-de-Gea, G. Garcia-Mateos, J.L. Fernandez-Aleman, J.L. Hernandez-Hernandez. A Computer-Aided Detection System for Digital Chest Radiographs. Journal of Healthcare Engineering volume 2016, (2016). [Google Scholar]
  10. P. Lakhani, B. Sundaram. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology: volume 284, (2017). [Google Scholar]
  11. L. Yao, E. Poblenz, D. Dagunts, B. Covington, D. Bernard, K. Lyman. Learning to Diagnose from Scratch by Exploiting Dependencies among Labels. arXiv:1710.10501v2, (2018). [Google Scholar]
  12. K. He, X. Zhang, S. Ren, and** J. Sun, “Deep residual learning for image recognition,” Conference on Computer Vision and Pattern Recognition, (2016). [Google Scholar]
  13. A. Krizhevsky, I. Sutskever, and** G.E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097-1105 (2012). [Google Scholar]
  14. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and** A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9 (2015). [Google Scholar]
  15. K. Simonyan and** A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, (2014). [Google Scholar]
  16. Huang, Gao, Liu, Zhuang, Weinberger, Kilian Q, and van der Maaten, Laurens. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, (2016). [Google Scholar]
  17. D. Demner-Fushman, M.D. Kohli, M.B. Rosenman, S.E. Shooshan, L. Rodriguez, S. Antani, G.R. Thoma, and** C.J. McDonald. Preparing a collection of radiology examination for distribution and retrieval. Journal of the American Medical Association, 23(2):304-310, 2015.Open-i: An open access biomedical search engine. [Google Scholar]
  18. J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi, K-i. Komatsu, M. Matsui, H. Fujita, Y. Kodera, and** K. Doi, “Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules,” American Journal of Roentgenology, vol. 174, no. 1, pp. 71-74 (2000). [Google Scholar]
  19. B. Van Ginneken, M.B. Stegmann, and** M. Loog, “Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database,” Medical image analysis, vol. 10, no. 1, pp. 19-40 (2006). [Google Scholar]
  20. S. Jaeger, S. Candemir, S. Antani, Y-X.J. Wang, P-X. Lu, and** G. Thoma, “Two public chest x-ray datasets for computer-aided screening of pulmonary diseases,” Quantitative imaging in medicine and surgery, vol. 4, no. 6, p.475, (2014). [Google Scholar]
  21. R. Leaman, R. Khare, and** Z. Lu. Challenges in clinical natural language processing for automated disorder normalization. Journal of Biomedical Informatics, 57:28-37 (2015). [Google Scholar]
  22. A.R. Aronson and** F-M. Lang. An overview of MetaMap: historical perspective and recent advances. Journal of the American Medical Informatics Association, 17(3): 229-236, may (2010). [Google Scholar]
  23. Belarus Tuberculosis Portal. Belarus Public Health Website. http://obsolete.tuberculosis. Published September 1, 2011. Updated July 17, (2015). Accessed August 20, (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.