Open Access
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
Article Number 03052
Number of page(s) 5
Section Computing
Published online 29 July 2020
  1. V. Kiryakova, “The special functions of fractional calculus as generalized fractional calculus operators of some basic functions,” Computers and Mathematics with Applications, Vol. 59, no. 3, pp. 1128-1141, Feb. 2010 [Google Scholar]
  2. Patil Parag,Singhaniya Navin,Jage Chaitanya,Vyawahare Vishwesh,Patil Mukesh and Paluri Nataraj. (2018). GPU Computing of Special Mathematical Functions used in Fractional Calculus. 10.2174/9781681085999118010011. [Google Scholar]
  3. Olivier Vallee and Manuel Soares - Airy function and applications in physics [Google Scholar]
  4. J. Liu, C. Gong, W. Bao, G. Tang, and Y. Jiang, “Solving the Caputo fractional reactiondiffusion equation on GPU”, Discrete Dynamics in Nature and Society, Hindawi Publishing Corporation, Vol. 2014, 2014. [Google Scholar]
  5. N.E. Banks, “Insights from the parallel implementation of efficient algorithms for the fractional calculus”, University of Chester, United Kingdom, 2015 [Google Scholar]
  6. Nvidia, CUDA C Programming Guide, Ver. 7.5, Sep. 2015. [Online]. Available: [Google Scholar]
  7. “MATLAB Documentation” [Google Scholar]
  8. Available:’stid=CRUXlftnav [Google Scholar]
  9. “Predicting and Measuring Parallel Performance”, February 1, 2012. [Online]. Available: [Google Scholar]
  10. “Parallel Computing”, Wolfram Mathworld. [Online]. Available: [Google Scholar]
  11. “Best Practices for MATLAB GPU Coding”, Cornell University Center for Advanced Computing. [Online]. Available: [Google Scholar]
  12. C¸. Uluis¸ik and L. Sevgi, “A Tutorial on Bessel Functions and Numerical Evaluation of Bessel Integrals,” in IEEE Antennas and Propagation Magazine, Vol. 51, no. 6, pp. 222-233, Dec. 2009. [Google Scholar]
  13. Amparo Gil, Javier Segura, Nico M. Temme, ”Numerical methods for special functions-Society for industrial and Applied Mathematics”. [Google Scholar]
  14. B.K. Agarwal, Hari Prakash 2016, Quantum Mechanics,PHI,Delhi. [Google Scholar]
  15. A.K. Ghatak, R.L. Gallawa and I.C. Goyal, ”Accurate solutions to Schrodinger’s equation using modified Airy function,” in IEEE Journal of Quantum Electronics, Vol. 28, no. 2, pp. 400-403, Feb. 1992. [Google Scholar]
  16. B. Zhang, S. Xu, F. Zhang, Y. Bi and L. Huang ,”Accelerating MATLAB code using GPU:A review of tools and strategies”. Artificial Intelligence, Management Science and ElectronicCommerce(AIMSEC):Dengleng, China, Aug. 2011. [Google Scholar]
  17. Fractional-order modeling of neutron transport in a nuclear reactor, by Vishwesh A.Vyawahare, P.S.V.Nataraj. [Google Scholar]
  18. G. Chen, G. Li, S. Pei and B. Wu, “High Performance Computing via a GPU” 2009 First International Conference on Information Science and Engineering, Nanjing, 2009, pp. 238-241. [Google Scholar]
  19. P. Sebah and X. Gourdon,”Introduction to the gamma function”, American Journal of Scientific Research, Feb. 2002. [Google Scholar]
  20. D.W. Lozier, “NIST digital library of mathematical functions”, Annals of Mathematics and Artificial Intelligence, Springer, May 2003.[Online]. Available: [Google Scholar]
  21. E. Lindholm, J. Nickolls, S. Oberman and J. Montrym, “NVIDIA Tesla: A Unified Graphics and Computing Architecture,” in IEEE Micro, Vol. 28, no. 2, pp. 39-55, March-April 2008. [Google Scholar]
  22. Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. “Chapter 10”. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 446. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253. [Google Scholar]
  23. Digital Library of Mathematical Functions, National Institute of Standards and Technology, available at [Google Scholar]
  24. Donald A. Neamen, ”Semiconductor Physics and Devices”,chapter 2 -Introduction to Quantum theory of solids . [Google Scholar]
  25. K. Parand, M. Nikarya, Application of Bessel functions for solving differential and integro-differential equations of the fractional order,Applied Mathematical Modelling, volume 38, issues 15-16, 2014, Pages 4137-4147,ISSN 0307-904X, [Google Scholar]
  26. Katugampola, Udita N. (15 October 2014). “A New Approach To Generalized Fractional Derivatives” (PDF). Bulletin of Mathematical Analysis and Applications. 6 (4): 1-1. arXiv:1106.0965. Bib-code:2011 arXiv1106.0965K. [Google Scholar]
  27. Niels Henrik Abel (1823). “Oplo¨sning af et par opgaver ved hjelp af bestemte integraler (Solution de quelques proble`mes a` l’aide d’inte´grales d e´finies, Solution of a couple of problems by means of definite integrals)” (PDF). Magazin for Naturvidenskaberne. Kristiania (Oslo): 55-68. [Google Scholar]
  28. Tenreiro Machado, Jose´ Kiryakova, Virginia Mainardi, Francesco. (2011). Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation - COMMUN NONLINEAR SCI NUMER SI. 16. 1140-1153. 10.1016/j.cnsns.2010.05.027. [CrossRef] [Google Scholar]
  29. Kreyszig, Erwin. Advanced Engineering Mathematics. New York :Wi-ley, 1983. [Google Scholar]
  30. NVIDIA. (2015). TESLA K80 GPU ACCELERATOR - Board specifications [PDF file]. Available: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.