Open Access
ITM Web Conf.
Volume 35, 2020
International Forum “IT-Technologies for Engineering Education: New Trends and Implementing Experience” (ITEE-2019)
Article Number 04017
Number of page(s) 12
Section Modernization of Engineering Courses based on software for Computer Simulation
Published online 09 December 2020
  1. V.D. Raskatov, V.I. Rubtsov, Simulation MATLAB motion of the mobile robot’s group when working in the industrial-urban environment, AIP Conference Proceedings 2195 (2019) [Google Scholar]
  2. V. Serebrenny, M. Shereuzhev, I. Metasov, Approaches to the robotization of agricultural mobile machines, MATEC Web of Conferences 2018, Vol. 161, 3014 (2018) [CrossRef] [Google Scholar]
  3. D. Vail, M. Veloso, Dynamic multi-robot coordination, Multi-Robot Systems: From Swarms to Intelligent Automata, Eds.: A. Schultz, L. Parker, and F. Schneider, Kluwer Academic Publishers, V. II., pp. 87–100 (2003) [Google Scholar]
  4. Vladimir Serebrennyj, Andrey Boshlyakov, Alexander Ogorodnik, Current Control in the Drives of Dexterous Robot Grippers, Third International Conference on Interactive Collaborative Robotics, ICR 2018, Leipzig, Germany, September 18–22, pp. 239-248 (2018) [Google Scholar]
  5. D. Hladek, J. Vascak, P. Sincak, Multi-robot control system for pursuit-evasion problem, Journal of electrical engineering, Vol. 60, No. 3, pp. 143-148 (2009) [Google Scholar]
  6. I.A. Kalyaev, A.R. Gajduk, S.G. Kapustyan, Modeli i algoritmy kollektivnogo upravleniya v gruppah robotov [Collective control models and algorithms in groups of robots], Moscow: Fizmatlit (2009) [Google Scholar]
  7. Y. Liu, J. Yang, Y. Zheng, Z. Wu, M. Yao, Multi-Robot Coordination in Complex Environment with Task and Communication Constraints, Intern. J. of Advanced Robotic Systems, Vol. 10, pp. 1-14 (2013) [CrossRef] [Google Scholar]
  8. D.A. Beloglazov, A.R. Gajduk, Gruppovoe upravlenie podvizhnymi ob”ektami v neopredelennyh sredah [Group control of moving objects in uncertain environments], edited by V.H. Pshihopova, Moscow: Fizmatlit (2015) [Google Scholar]
  9. Sergey Vorotnikov, Konstantin Ermishin, Anaid Nazarova, Arkady Yuschenko, Multiagent Robotic Systems in Collaborative Robotics, A. Ronzhin et al. (eds): ICR 2018, LNAI 11097, Springer, pp. 270-279 (2018) [Google Scholar]
  10. S.A. Stoeter, P.E. Rybski, M.D. Erickson, M. Wyman, M. Gini, D.F. Hougen, N.A. Papanikolopoulos, Robot Team for Exploration and Surveillance: Design and Architecture, Proc. of the Intern. Conf. on Intelligent Autonomous Systems 6, Venice, Italy, July 2000, pp. 767–774 (2000) [Google Scholar]
  11. A.V. Timofeev, Intelligent Control and Operations Research for Multi-Agent Robot Systems, International Autonomous Systems: Intern. Scientific Issue, Karlsruhe–Ufa: USATU, pp. 119–124 (1998) [Google Scholar]
  12. T. Kamada, K. Oikawa, AMADEUS: A Mobile, Autonomous Decentralized Utility System for Indoor Transportation, IEEE Intern. Conf. on Robotics and Automation, Leuven, Belgium, May 16–20, Vol. 4, pp. 2229–2236 (1998) [Google Scholar]
  13. M. Nathan, M. Zavlanos, V. Kumar, G. Pappas, Distibuted multi-robot task assignment and formation control, Proc. of the IEEE Intern. Conf. on Robotics and Automation, pp. 128-133 (2008) [Google Scholar]
  14. V.P. Noskov, V.I. Rubtsov, I.V. Rubtsov, Matematicheskie modeli dvizheniya i sistemy tekhnicheskogo zreniya mobil’nyh robototekhnicheskih kompleksov: uchebnoe posobie [Mathematical models of motion and technical vision systems for mobile robotic complexes: study guide], Moscow: Izdatel’stvo MGTU im. N.E. Baumana[Publishing BMSTU], (2015) [Google Scholar]
  15. Konstantin Mashkov, Vasyliy Rubtsov, Ivan Rubtsov, Development of robotics technologies in agriculture, MATEC Web Conf. 224 05004 (2018). DOI: 10.1051/matecconf/201822405004 [CrossRef] [Google Scholar]
  16. Kadhim Oleiwi, R. Al-Jarrah, H. Roth, B. Kazem, Integrated Motion Planning and Control for Multi Objectives Optimization and Multi Robots Navigation, IFACPapersOnLine 48, Vol. 10, pp. 99-104(2015) [Google Scholar]
  17. V. Serebrenny, A. Boshliakov, G. Ovsiankin, Active stabilization in robotic vision systems, MATEC Web of Conferences 2018, Vol. 161, 3019 (2018) [CrossRef] [Google Scholar]
  18. S.A. Stoeter, I.T. Burt, N. Papanikolopoulos, Scout Robot Motion Model, Proc. of the IEEE Intern. Conf. on Robotics and Automation, Taipei, Taiwan, May (2003) [Google Scholar]
  19. Description of the Simscape Multibody package. Available at: (last accessed 2020/02/20) [Google Scholar]
  20. Description of the Mobile Robotics Simulation Toolbox. URL: (last accessed 2020/02/20). [Google Scholar]
  21. Description of the ROS Toolbox. URL: (last accessed 2020/02/20). [Google Scholar]
  22. S. Zabihifar, A. Yuschenko, Hybrid force/position control of a collaborative parallel robot using adaptive neural network, Lecture Notes in Computer Science 2018, Vol. 11097 LNAI, pp. 280–290 (2018). DOI: 10.1007/978-3-319-99582-3_29 [Google Scholar]
  23. K-Y. Tu, M-T. Chang Chien, Formation Control of the Multi-Robot Team’s Behaviors Based on Decentralized Strategies, Proc. of the American Control Conference, pp. 1-5 (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.