Open Access
Issue
ITM Web Conf.
Volume 35, 2020
International Forum “IT-Technologies for Engineering Education: New Trends and Implementing Experience” (ITEE-2019)
Article Number 04019
Number of page(s) 16
Section Modernization of Engineering Courses based on software for Computer Simulation
DOI https://doi.org/10.1051/itmconf/20203504019
Published online 09 December 2020
  1. S.A. Borisov, A.F. Plekhanova, Sravnitel’nyy analiz proyektnogo i protsessornogo podkhodov v upravlenii, Rossiyskoye predprinimatel’stvo, № 13, p. 235 (2013) [Google Scholar]
  2. S.N. Apen’ko, Povedencheskiye kompetentsii komandy proyekta v mezhdunarodnykh professional’nykh standartakh, Doklady 3-yey konferentsii «Molodezh’ i upravleniye proyektami v Rossii: sovremennyye vyzovy i perspektivy, Vysshaya shkola ekonomiki (2013). www.pmcof.hse.ru [Google Scholar]
  3. V.M. Lokhin, S.V. Man’ko, M.P. Romanov, S.A-K. Diane, Perspektivy primeneniya, printsipy postroyeniya i problemy razrabotki mul’tiagentnykh robototekhnicheskikh system, VESTNIK MGTU MIREA, № 3, Vol 1 (2015) [Google Scholar]
  4. A. Kozov, The Stage Robot Simulator, Stage Manual. URL: http://rtv.github.io/Stage/ (7.06.2018). [Google Scholar]
  5. X. Zhu, M. Gao, S. Li, A real-time Road Boundary Detection Algorithm Based on Driverless Cars, 4th National Conference on Electrical, Electronics and Computer Engineering, pp. 843-848 (2016) [Google Scholar]
  6. N. Garnett, et al., Real-time category-based and general obstacle detection for autonomous driving, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 198-205 (2017). [Google Scholar]
  7. V.R. Guilherme, G.O. Manuel, R.R. Francisco, Robust Nonlinear Control for Path Tracking of a Quad-Rotor Helicopter, Vol. 17, I. 1, pp. 142-156 (2015) [Google Scholar]
  8. T. Luukkonen, Modelling and control of quadcopter, pp.2-6 (2011) [Google Scholar]
  9. L. Yang, J. Qi, D. Song, J. Han, Y. Xia, Survey of Robot 3D Path Planning Algorithms, Journal of Control Science and Engineering, p. 22 (2016). A. K. Jha, Intelligent Control and Path Planning of Multiple Mobile Robots Using Hybrid Ai Techniques, PhD thesis, p. 213 (2016) [Google Scholar]
  10. O. Montiel, U. Orozco-Rosas, R. Sepúlveda, Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles, Expert Systems with Applications, vol. 42(12), pp. 5177-5191 (2015) [CrossRef] [Google Scholar]
  11. Z. Liu, et al., Distributed sampled-data control of nonholonomic multi-robot systems with proximity networks, Automatica, vol. 77, pp. 170-179 (2017) [CrossRef] [Google Scholar]
  12. F. Bounini, D. Gingras, H. Pollart, D. Gruyer, Modified Artificial Potential Field Method for Online Path Planning Applications, IEEE Intelligent Vehicles Symposium (IV), pp. 1–7 (2017) [Google Scholar]
  13. Anood Ibrahiml, Reba Rachel Alexander, Mohammed Shahid Umar Sanghar, Royson Donate D“Souza2, Control Systems in Robotics, International Journal of Engineering Inventions e-ISSN: 2278-7461, p-ISSN: 2319-6491, Vol. 5, I. 5, pp. 2938, May (2016) [Google Scholar]
  14. Zool Hilmi Ismail and Nohaidda Sariff, A Survey and Analysis of Cooperative MultiAgent Robot Systems: Challenges and Directions, February 2nd 2018, Reviewed: June 6th 2018, Published: November 5th 2018. DOI: 10.5772/intechopen.79337. [Google Scholar]
  15. S. G. Lee, Y. Diaz-Mercado, M. Egerstedt, MMultirobot control using time-varying density functions, IEEE Trans, Robot, 31(2), pp. 489–493 (2015). https://doi.org/10.1109/TRO.2015.2397771CrossRefGoogleScholar. [CrossRef] [Google Scholar]
  16. A.Y. Fridman, SEMS-based control in locally organized hierarchical structures of robots collectives, A.E. Gorodetskiy, V.G. Kurbanov, (Eds.), Smart Electromechanical Systems: The Central Nervous System, Studies in Systems, Decision and Control, Springer International Publishing, vol. 95, pp. 31–47, CrossRefGoogle Scholar, Switzerland (2017) [Google Scholar]
  17. A.E. Gorodetskiy, I.L. Tarasova, Situational control a group of robots based on SEMS, A.E. Gorodetskiy, I.L. Tarasova (Eds.), Smart Electromechanical Systems: Group Interaction. Studies in Systems, Decision and Control, vol. 174, p. 337, Springer, 03 November (2019). https://doi.org/10.1007/978-3-319-99759-9GoogleScholar. [Google Scholar]
  18. Qiangqiang Zhao, Junkang Guo, Dewen Yu, A novel approach of input tolerance design for parallel mechanisms using the level set method, July 2 (2019). https://doi.org/10.1177/0954405419863228. [Google Scholar]
  19. I.K. Romanova, Multi-objective optimization of dynamic systems and problem of the Pareto front control, AIP conference Proceedings, 2171, 110016 (2019). https://doi.org/10.1063/1.5133250. [CrossRef] [Google Scholar]
  20. S.G. Liu, Q. Jin, C. Liu, Analytical method for optimal component tolerances based on manufacturing cost and quality loss, Proc IMechE, Part B: J Engineering Manufacture 2013, No. 227, pp. 1484–1491 (2013) [CrossRef] [Google Scholar]
  21. N. Jawahar, R. Sivasankaran, M. Ramesh, Optimal Pareto front for manufacturing tolerance allocation model, Proc IMechE, Part B: J Engineering Manufacture 2017; No. 231, pp. 1190–1203 (2017) [CrossRef] [Google Scholar]
  22. Alexander Lavin, Pareto Front-Based Multiobjective Path Planning Algorithm, Cornell University, Computer Science Robotics. https://arxiv.org/abs/1505.05947 22 May 2015eeding 2171. [Google Scholar]
  23. Ya. LeCun, B. Yoshua, H. Geoffrey, Deep learning, Nature, vol. 521, pp. 436-444 (2015) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  24. A.V. Barenji & C. Değirmenci, Robot Control System based on Web Application and RFID Technology, MATEC Web of Conferences, Vol. 28, p. 04001, EDP Sciences. -9 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  25. Jessica T. DeCuir-Gunby & Paul A. Schutz, Mixed Methods Designs: Frameworks for Organizing Your Research Methods, Developing a Mixed Methods Proposal: A Practical Guide for Beginning Researchers (2017). DOI: https://dx.doi.org/10.4135/9781483399980.n10 [Google Scholar]
  26. ECSS-E-TM-10-25 System Engineering Engineering Design Model Data Exchange (CDF). [Google Scholar]
  27. System Composer™/www.mathworks.com. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.