Open Access
ITM Web Conf.
Volume 36, 2021
The 16th IMT-GT International Conference on Mathematics, Statistics and their Applications (ICMSA 2020)
Article Number 04007
Number of page(s) 10
Section Operations Research/Applied Mathematics
Published online 26 January 2021
  1. A. Sharma, S.S. Bhadauria, R. Gupta, Image compression and sparsity measurement by using multilevel and different wavelet functions, in 2019 Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 517–520 (2019) [Google Scholar]
  2. Y. Li, S. Gu, C. Mayer, L.V. Gool, R. Timofte, Group sparsity: the hinge between filter pruning and decomposition for network compression, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020) [Google Scholar]
  3. R. Blanquero, E. Carrizosa, C. Molero-Río, D.R. Morales, Eur. J. Oper. Res. 284(1), 255–272 (2020) [CrossRef] [Google Scholar]
  4. W. Deng, W. Yin, Y. Zhang, Group sparse optimization by alternating direction method, Wavelets and Sparsity XV 8858, 88580R (2013) [CrossRef] [Google Scholar]
  5. H.A. Le Thi, T. Pham Dinh, H.M. Le, X.T. Vo, Eur. J. Oper. Res. 244(1), 26–46 (2015) [CrossRef] [Google Scholar]
  6. J. Xu, Y.B. Zhao, Optim. Methods. Softw. 35(4), 1–19 (2020) [CrossRef] [Google Scholar]
  7. Y. Sun, X. Tan, X. Li, L. Lei, G. Kuang, Signal Processing 168, 107369 (2020) [CrossRef] [Google Scholar]
  8. B.K. Natarajan, SIAM J. Comput. 24(2), 227–234 (1995) [CrossRef] [MathSciNet] [Google Scholar]
  9. E.J. Candes. Comptes. Rendus. Math. 346(9), 589–592 (2008) [CrossRef] [Google Scholar]
  10. E.J. Candes, T. Tao, IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005) [CrossRef] [Google Scholar]
  11. J. Yang, J. Thompson, X. Huang, T. Jin, Z. Zhou, IEEE Trans. Geosci. Remote Sensing 51(2), 983–994 (2013) [CrossRef] [Google Scholar]
  12. C.R. Berger, Z. Wang, J. Huang, S. Zhou, IEEE Commun. Mag. 48(11), 164–174 (2010) [CrossRef] [Google Scholar]
  13. Z. Chen, X. Jin, L. Li, G. Wang, Phys. Med. Biol. 58(7), 2119–2141 (2013) [Google Scholar]
  14. M. Lustig, J.M. Pauly, D. Donoho, Magn. Reason. Med. 58(6), 1182–1195 (2007) [CrossRef] [PubMed] [Google Scholar]
  15. E.J. Candes, M.B. Wakin, S.P. Boyd, J. Fourier Anal. Appl. 14(5–6), 877–905 (2008) [Google Scholar]
  16. R. Chartrand, V. Staneva, Inverse Probl. 24(3) (2008) [Google Scholar]
  17. Y. Sun, J. Tao, Int. J. Imaging Syst. Technol. 24(3), 215–223 (2014) [CrossRef] [Google Scholar]
  18. C. Bao, Z. Shen, B. Dong, L. Hou, X. Zhang, X. Zhang, Inverse Probl. 32(11) (2016) [Google Scholar]
  19. X. Zhang, Y. Lu, T. Chan, J. Sci. Comput. 50(3), 519–535 (2012) [CrossRef] [Google Scholar]
  20. J. Trzasko, A. Manduca, IEEE Trans. Med. Imaging 28(1),106–121 (2009) [CrossRef] [Google Scholar]
  21. A. Cauchy, Rend. Sci. 25, 46–89 (1847) [Google Scholar]
  22. X. Wang, IEEE Microw. Wirel. Compon. Lett. 12, 24-26 (2008) [Google Scholar]
  23. X.S. Yang, Nature-inspired optimization algorithms (Elsevier, 1–21, 2014) [Google Scholar]
  24. R. Poisel, Electronic warfare target location methods (Artech House, 2012) [Google Scholar]
  25. M.R. Hestenes, E.L. Stiefel, J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952) [CrossRef] [MathSciNet] [Google Scholar]
  26. S. El Hajji, N. Moukafih, G. Orhanou, Analysis of neural network training and cost functions impact on the accuracy of IDS and SIEM systems, International Conference on Codes, Cryptology, and Information Security, 433–451 (2019) [Google Scholar]
  27. C.G. Broyden, Math. Comput. 21(99), 368–381 (1967) [CrossRef] [Google Scholar]
  28. J. Nocedal, S.J. Wright, Numerical Optimization (Springer Science & Business Media, 2006) [Google Scholar]
  29. H.S. Sim, W.J. Leong, C.Y. Chen, Optim. Lett. 13(3), 617–632 (2019) [CrossRef] [Google Scholar]
  30. D.G. Luenberger. Linear and nonlinear programming, 2nd ed. (Addison-Wesley, 1984) [Google Scholar]
  31. L. Armijo, Pac. J. Math. 16(1), 1–3 (1966) [CrossRef] [MathSciNet] [Google Scholar]
  32. B. Martinet, Rev. Fran¸caise Inf. Rech. Oper. 4(R3), 154–158 (1970) [Google Scholar]
  33. N. Parikh, S. Boyd, Found. Trends Optim. 1(3), 127–239 (2014) [CrossRef] [MathSciNet] [Google Scholar]
  34. W. Hare, C. Sagastizábal, Math. Program 116(1-2):221–258 (2009) [CrossRef] [Google Scholar]
  35. X. Tang, K. Scheinberg, Efficient quasi-newton proximal method for large scale sparse optimization, NIPS (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.