Open Access
ITM Web Conf.
Volume 37, 2021
International Conference on Innovative Technology for Sustainable Development (ICITSD-2021)
Article Number 01005
Number of page(s) 8
Section Innovative Technology for Sustainable Development
Published online 17 March 2021
  1. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems. Curran Associates, 2672–2680. (2014) [Google Scholar]
  2. X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang and S. P. Smolley, “Least Squares Generative Adversarial Networks”, IEEE International Conference on Computer Vision (ICCV), Venice, 2017, pp. 2813-2821, doi: 10.1109/ICCV.2017.304, (2017) [Google Scholar]
  3. Mihaela Rosca, Balaji Lakshminarayanan, David WardeFarley, and Shakir Mohamed. Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv:1706.04987 (2017). [Google Scholar]
  4. Lan Lan1, Lei You2, Zeyang Zhang3, Zhiwei Fan4, Weiling Zhao 2, Nianyin Zeng5, Yidong Chen 6 and. Xiaobo Zhou, Generative adversarial networks and its application in biomedical informatics, volume 8, article 154, 1-14, Frontiers in public health, Advanced Deep Learning Methods for Biomedical Information Analysis (2020) [Google Scholar]
  5. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-toimage translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision. Venice (2017) [Google Scholar]
  6. Lu X, Tsao Y, Matsuda S, Hori C. Speech enhancement based on deep denoising Auto-Encoder. In: Proceedings of Interspeech. Lyon, pp. 436–40, (2013) [Google Scholar]
  7. Hiasa Y, Otake Y, Takao M, Matsuoka T, Sato Y. Crossmodality image synthesis from unpaired data using CycleGAN: effects of gradient consistency loss and training data size. In: Goksel O, Oguz I, Gooya A, Burgos N, editors. Simulation and Synthesis in Medical Imaging Third International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Proceedings. Granada: Springer verlag (2018) [Google Scholar]
  8. Tanner C, Ozdemir F, Profanter R, Vishnevsky V, Konukoglu E, Goksel O. Generative Adversarial Networks for MR-CT deformable image registration. arXiv:1807.07349 (2018). [Google Scholar]
  9. Huo Y, Xu Z, Bao S, Assad A, Abramson RG, Landman BA. Adversarial synthesis learning enables segmentation without target modality ground truth. arXiv:1712.07695, doi: 10.1109/ISBI.2018.8363790 (2017) [Google Scholar]
  10. Chartsias A, Joyce T, Dharmakumar R, Tsaftaris SA. Adversarial image synthesis for unpaired multi-modal cardiac data. In: Tsaftaris S, Gooya A, Frangi A, Prince J, editors. Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Computer Science. Cham: Springer (2017) [Google Scholar]
  11. Jin CB, Jung W, Joo S, Park E, Cui X. Deep CT to MR synthesis using paired and unpaired data. arXiv:1805.10790, doi: 10.3390/s19102361 (2018) [Google Scholar]
  12. Yue Z, Miao S, Mansi T, Rui L. Task driven generative modeling for unsupervised domain adaptation: application to x-ray image segmentation, arXiv:1806.07201 (2018). [Google Scholar]
  13. Ophir Gozes, Hayit Greenspan, Bone Structures Extraction And Enhancement In Chest Radiographs Via CNN Trained On Synthetic Data, arxiv:2003.10839v1 [Cs.Cv] (2020) [Google Scholar]
  14. Zhang Z, Lin Y, Zheng Y. Translating and segmenting multimodal medical volumes with cycleand shapeconsistency Generative Adversarial Network.arXiv:1802.09655. doi:10.1109/CVPR.2018.00963 (2018). [Google Scholar]
  15. M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, (2017) [Google Scholar]
  16. M. Mehralian and B. Karasfi, “RDCGAN: Unsupervised Representation Learning With Regularized Deep Convolutional Generative Adversarial Networks”, 9th Conference on Artificial Intelligence and Robotics and 2nd Asia-Pacific International Symposium, Kish Island, Iran, pp. 31-38, doi: 10.1109/AIAR.2018.8769811 (2018) [Google Scholar]
  17. Ioffe S, Szegedy C, Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015) [Google Scholar]
  18. Maas AL, Hannun AY, Ng AY, Rectifier nonlinearities improve neural network acoustic models. In: Proc. icml. Vol 30, p 3 (2013) [Google Scholar]
  19. M. B. Lee, Y. H. Kim and K. R. Park, “Conditional Generative Adversarial NetworkBased Data Augmentation for Enhancement of Iris Recognition Accuracy”, in IEEE Access, vol.7, pp.122134-122152, doi:10.1109/ACCESS.2019.2937809 (2019) [Google Scholar]
  20. Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets (2016) [Google Scholar]
  21. Maayan Frid-Adar, Eya lKlang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan, Synthetic data augmentation using GAN for improved liver lesion classication. 2018 IEEE 15th International Symposium on Biomedical Imaging, pages 289–293, (2018) [Google Scholar]
  22. Maria J. M. Chuquicusma, Sarfaraz Hussein, Jeremy R Burt, and Ulas Bagci. How to fool radiologists with generative adversarial networks a visual Turing test for lung cancer diagnosis. IEEE 15th International Symposium on Biomedical Imaging, pages 240–244, (2018) [Google Scholar]
  23. Pedro Costa, Adrian Galdran, MariaIne sMeyer, Meindert Niemeijer Michael Abr`amo, Ana Maria Mendonc¸a, and Aur´elio Campilho. End-to-end adversarial retinal image synthesis. IEEE transactions on medical imaging, (2017) [Google Scholar]
  24. Andy Kitchen and Jarrel Seah. Deep generative adversarial neural networks for realistic prostate lesion MRI synthesis. CoRR, abs/1708.00129, (2017) [Google Scholar]
  25. M. TarekShaban, Christoph Baur, Nassir Navab, and Shadi Albarqouni. Staingan: Stain style transfer for digital histological images. CoRR, abs/1804.01601, (2018) [Google Scholar]
  26. Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, (2017) [Google Scholar]
  27. Agisilaos Chartsias, Thomas Joyce, Rohan Dharmakumar, and Sotirios A Tsaftaris. Adversarial image synthesis for unpaired multi-modal cardiac data. In International Workshop on Simulation and Synthesis in Medical Imaging, pages 3–13. Springer, (2017) [Google Scholar]
  28. Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40:834–848, (2018) Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, doi:10.1109/ICASSP.2018.8461430 (2018) [Google Scholar]
  29. Lee, D., Moon, W.J., Ye, J.C.. Which contrast does matter? towards a deep understanding of MR contrast using collaborative gan. arXiv preprint arXiv:1905.04105 (2019) [Google Scholar]
  30. Zeju Li, Yuanyuan Wang, and Jinhua Yu. Reconstruction of thin-slice medical images using generative adversarial network. In International Workshop on Machine Learning in Medical Imaging, pages 325–333. Springer, (2017) [Google Scholar]
  31. J. Gu, Z. Li, Y. Wang, H. Yang, Z. Qiao and J. Yu, “Deep Generative Adversarial Networks for Thin-Section Infant MR Image Reconstruction”, in IEEE Access, Vol. 7, pp. 68290-68304, doi: 10.1109/ACCESS.2019.2918926 (2019) [Google Scholar]
  32. Zhang L., Gooya A., Frangi A.F. Semi-supervised Assessment of Incomplete LV Coverage in Cardiac MRI Using Generative Adversarial Nets. In: Tsaftaris S., Gooya A., Frangi A., Prince J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Computer Science, Vol 10557. Springer, Cham. (2017) [Google Scholar]
  33. M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger and H. Greenspan, “Synthetic data augmentation using GAN for improved liver lesion classification”, 2018 IEEE 15th International Symposium on Biomedical Imaging Washington, DC, doi: 10.1109/ISBI.2018.8363576, (2018) [Google Scholar]
  34. Yan P., Xu S., Rastinehad A.R., Wood B.J. (2018) Adversarial Image Registration with Application for MR and TRUS Image Fusion. In:Shi Y., Suk HI., Liu M. (eds) Machine Learning in Medical Imaging. Lecture Notes in Computer Science, Vol 11046. Springer, Cham (2018) [Google Scholar]
  35. H. Salehinejad, S. Valaee, T. Dowdell, E. Colak and J. Barfett, “Generalization of Deep Neural Networks for Chest Pathology Classification in X-Rays Using Generative Adversarial Networks”, IEEE International Conference on [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.