Open Access
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
Article Number 01003
Number of page(s) 8
Section Automation
Published online 09 August 2021
  1. P. Roback, J. Legler, Review of Multiple Linear Regression, in Beyond Multiple Linear Regression (Chapman and Hall/CRC, 2021), pp. 1–38, [Google Scholar]
  2. A. Gelman, J. Hill, A. Vehtari, Logistic regression, Regression and other stories (Cambridge University Press, 2020) [CrossRef] [Google Scholar]
  3. D. Shaub, Fast and accurate yearly time series forecasting with forecast combinations, International Journal of Forecasting 36, 116 (2020) [Google Scholar]
  4. J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, A. Lopez, A comprehensive survey on support vector machine classification: Applications, challenges and trends, Neurocomputing 408, 189 (2020) [Google Scholar]
  5. L. Silvestri, A. Forcina, V. Introna, A. Santolamazza, V. Cesarotti, Maintenance transformation through Industry 4.0 technologies: A systematic literature review, Computers in Industry 123, 103335 (2020) [Google Scholar]
  6. H. Truong-Ba, M.E. Cholette, P. Borghesani, L. Ma, G. Kent, Condition-based inspection policies for boiler heat exchangers, European Journal of Operational Research 291, 232 (2021) [Google Scholar]
  7. T. Zonta, C.A. da Costa, R. da Rosa Righi, M.J. de Lima, E.S. da Trindade, G.P. Li, Predictive maintenance in the Industry 4.0: A systematic literature review, Computers & Industrial Engineering p. 106889 (2020) [Google Scholar]
  8. A. Jimenez-Cortadi, I. Irigoien, F. Boto, B. Sierra, G. Rodriguez, Predictive maintenance on the machining process and machine tool, Applied Sciences 10, 224 (2020) [Google Scholar]
  9. T.P. Carvalho, F.A. Soares, R. Vita, R.d.P. Francisco, J.P. Basto, S.G. Alcalá, A systematic literature review of machine learning methods applied to predictive maintenance, Computers & Industrial Engineering 137, 106024 (2019) [Google Scholar]
  10. M. Compare, P. Baraldi, E. Zio, Challenges to IoT-enabled predictive maintenance for industry 4.0, IEEE Internet of Things Journal 7, 4585 (2019) [Google Scholar]
  11. S.M. Lee, D. Lee, Y.S. Kim, The quality management ecosystem for predictive maintenance in the Industry 4.0 era, International Journal of Quality Innovation 5, 1 (2019) [Google Scholar]
  12. V. Radhakrishnan, M. Ramasamy, H. Zabiri, V. Do Thanh, N. Tahir, H. Mukhtar, M. Hamdi, N. Ramli, Heat exchanger fouling model and preventive maintenance scheduling tool, Applied Thermal Engineering 27, 2791 (2007) [Google Scholar]
  13. H.M. Hashemian, State-of-the-art predictive maintenance techniques, IEEE Transactions on Instrumentation and measurement 60, 226 (2010) [Google Scholar]
  14. S. Selcuk, Predictive maintenance, its implementation and latest trends, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231, 1670 (2017) [Google Scholar]
  15. Z. Zhou, B. Yao, W. Xu, L. Wang, Condition monitoring towards energy-efficient manufacturing: a review, The International Journal of Advanced Manufacturing Technology 91, 3395 (2017) [Google Scholar]
  16. R. Sahal, J.G. Breslin, M.I. Ali, Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case, Journal of manufacturing systems 54, 138 (2020) [Google Scholar]
  17. G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical learning, Vol. 112 (Springer, 2013) [Google Scholar]
  18. Position Paper-Deloitte Analytics Institute, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.