Open Access
Issue
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
Article Number 03045
Number of page(s) 9
Section Computing
DOI https://doi.org/10.1051/itmconf/20214003045
Published online 09 August 2021
  1. Luciano Barbosa and Juliana Freire, “Searching for Hidden-Web Databases”, In Proc. of Web Database, 2015. [Google Scholar]
  2. J. Cope, N. Craswell, and D. Hawking, “Automated Discovery of Search Interfaces on the web”, In Proceedings of the Fourteenth Australasian Database Conference (ADC2019), Adelaide, Australia, 2019. [Google Scholar]
  3. Z. Zhang, B. He, and K. Chang, “Understanding Web Query Interfaces: Best-Effort Parsing with Hidden Syntax”, In Proceedings of ACM International Conference on Management of Data, pp.107–118, 2019. [Google Scholar]
  4. L. Barbosa and J. Freirel, “Siphoning Hidden-Web Data through Keyword-Based Interface”, In Proceedings of SBBD, 2004. [Google Scholar]
  5. X. B. Deng, Y. M. Ye, H. B. Li, and J. Z. Huang, “An Improved Random Forest Approach For Detection Of Hidden Web Search Interfaces”, In Proceedings of the 7th International Conference on Machine Learning and Cybernetics, China. IEEE, 2008. [Google Scholar]
  6. Y. Ye et al., “Feature Weighting Random Forest for Detection of Hidden Web Search Interfaces”, In Computational Linguistics and Chinese Language Processing, Vol. 13, No. 4, pp.387–404, 2019. [Google Scholar]
  7. P. Bai, and J. Li, “The Improved Naive Bayesian WEB Text Classification Algorithm”, In International Symposium on Computer Network and Multimedia Technology, IEEE Explorer, 2019. [Google Scholar]
  8. Anuradha and A.K. Sharma, “A Novel Approach For Automatic Detection and Unification of Web Search Query Interfaces Using Domain Ontology”, In International Journal of Information Technology and Knowledge Management, Vol. 2, No. 2, 2010. [Google Scholar]
  9. J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic Schema Matching with Cupid”, In the 27th VLBB Conference, Rome, 2009. [Google Scholar]
  10. H. H. Do, and E. Rahm, “COMA-a System for Flexible Combination of Schema Matching Approaches”, In Proceedings of the 28th Intl. Conference on Very Large Databases (VLDB), Hong Kong, 2012. [Google Scholar]
  11. A. H. Doan, P. Domingos, and A. Levy, “Learning source descriptions for data integration”, In Proceedings of the WebDB Workshop, pp. 81–92, 2017. [Google Scholar]
  12. A. Doan, P. Domingos, and A. Halevy, “Reconciling schemas of disparate data sources: A machine learning approach”, In Proceedings of the International Conference on Management of Data (SIGMOD), Santa Barbara, CA, New York: ACM Press, 2011. [Google Scholar]
  13. S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity Flooding: A Versatile Graph Matching Algorithm”, In Proceedings of the l8th International Conference on Data Engineering (ICDE), San Jose, CA,2019. [Google Scholar]
  14. O. Kaljuvee, O. Buyukkokten, H. G. Molina, and A. Paepcke, “Efficient Web form entry on PDAs”, In Proceedings of the 10th International Conference on World Wide Web, pp. 663–672, 2018. [Google Scholar]
  15. H. He, W. Meng, C. Yu, and Z. Wu, “Constructing interface schemas for search interfaces of Web databases”, In Proceedings of the 6th International Conference on Web Information Systems Engineering (WISE’05),pp. 29–42, 2015. [Google Scholar]
  16. W. Wu, C. Yu, A. Doan, and W. Meng, “An interactive clustering-based approach to integrating source query interfaces on the Deep Web”, In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 95–106, 2014. [Google Scholar]
  17. B. He, and K. C. C. Chang, “Automatic complex schema matching across web query interfaces: A correlation mining approach”, In Proceedings of the ACM Transaction on Database Systems, Vol.31, pp.1–45, 2016. [Google Scholar]
  18. P. Lage et al., “Collecting Hidden Web Pages for Data Extraction” In Proceedings of the 4th International workshop on Web Information and Data Management, pp. 69–75, 2012. [Google Scholar]
  19. B. He, and K. C. C. Chang, “Statistical schema matching across web query interfaces”, In the SIGMOD Conference, 2013. [Google Scholar]
  20. X. Zhong, et al., “A Holistic Approach on Deep Web Schema Matching”, In Proceedings of the International Conference on Convergence Information Technology, 2017. [Google Scholar]
  21. S. Raghavan and H. Garcia-Molina, “Crawling the Hidden Web”, In Proceedings of the 27th International Conference on Very Large Data Bases, Roma, Italy, pp. 129–138, 2016. [Google Scholar]
  22. B. Qiang, J. Xi, B. Qiang, and L. Zhang, “An Effective Schema Extraction Algorithm on the Deep Web. Washington, DC: IEEE, 2018. [Google Scholar]
  23. M. Niepert, C. Buckner, and C. Allen, “A Dynamic Ontology for a Dynamic Reference Work”, In Proceedings of the (JCDL’17), Vancouver, Canada, 2017. [Google Scholar]
  24. A. Deitel, C. Faron, and R. Dieng, “Learning ontologies from rdf annotations”, In the IJCAI Workshop in Ontology Learning, 2001. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.