Open Access
Issue
ITM Web Conf.
Volume 42, 2022
1st International Conference on Applied Computing & Smart Cities (ICACS21)
Article Number 01006
Number of page(s) 6
DOI https://doi.org/10.1051/itmconf/20224201006
Published online 24 February 2022
  1. M. Abrar, A. Sim, D. Shah, S. Khusro, A. Salam, Weather Prediction using Classification, Science International. 26, 2217-2223, https://www.researchgate.net/publication/272482887_Weather_Prediction_using_Classification, (2014) [Google Scholar]
  2. A. John Arnfield, Climate classification, Encyclopedia Britannica, https://www.britannica.com/topic/classification-1703397, (17 Mar. 2016) [Google Scholar]
  3. J. Hidalgo, R. Jougla, On the use of local weather types classification to improve climate understanding: An application on the urban climate of Toulouse, PLoS ONE 13(12): e0208138. https://doi.org/10.1371/journal.pone.0208138, (2018) [CrossRef] [Google Scholar]
  4. H. Beck, N. Zimmermann, T. McVicar, et al., Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci Data 5, 180214. https://doi.org/10.1038/sdata.2018.214, (2018) [CrossRef] [Google Scholar]
  5. Armelle R. Remedio, C. Teichmann, et al. Evaluation of New CORDEX Simulations Using an Updated Köppen–Trewartha Climate Classification, Atmosphere 10, no. 11: 726, https://doi.org/10.3390/atmos10110726, (2019) [Google Scholar]
  6. CC. Lee, The gridded weather typing classification version 2: A global-scale expansion, Int J Climatol. 2020, 40: 1178–1196. https://doi.org/10.1002/joc.6263, (2020) [Google Scholar]
  7. I. Gad, H. Doreswamy, A comparative study of prediction and classification models on NCDC weather data, International Journal of Computers and Applications. 1-12, 10.1080/1206212X.2020.1766769, (2020) [CrossRef] [Google Scholar]
  8. A. Gardner, I. Maclean, K. Gaston, A new system to classify global climate zones based on plant physiology and using high temporal resolution climate data, Journal of Biogeography. 47. 10.1111/jbi.13927, (2020) [Google Scholar]
  9. K. Piotrowicz, D. Ciaranek, A selection of weather type classification systems and examples of their application. Theoretical and Applied Climatology. 140. 10.1007/s00704-020-03118-2, (2020) [Google Scholar]
  10. Y. Lai, N. Tanaka, S. Im, K. Kuraji, et al. Climate classification of Asian university forests under current and future climate, Journal of Forest Research. 25. 1-11. 10.1080/13416979.2020.1759898, (2020) [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Belušić Vozila, M. Telišman Prtenjak, I. Güttler, A Weather-Type Classification and Its Application to Near-Surface Wind Climate Change Projections over the Adriatic Region, Atmosphere, 2021; 12 (8):948. https://doi.org/10.3390/atmos12080948, (2021) [Google Scholar]
  12. D. Cui, S. Liang, D. Wang, Observed and projected changes in global climate zones based on Köppen climate classification, WIREs Climate Change, 12. 10.1002/wcc.701, (2021) [Google Scholar]
  13. Ketkar N. Convolutional Neural Networks. In: Deep Learning with Python. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-2766-4_5, (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.