Open Access
Issue
ITM Web Conf.
Volume 43, 2022
The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022)
Article Number 01010
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20224301010
Published online 14 March 2022
  1. P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of things applications: A systematic review,” Computer Networks, vol. 148, pp. 241–261, 2019. [CrossRef] [Google Scholar]
  2. D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of wireless sensor networks: an up-to- date survey,” Applied System Innovation, vol. 3, no. 1, p. 14, 2020. [CrossRef] [Google Scholar]
  3. S. Fu, Y. Zhang, Y. Jiang, C. Hu, C.-Y. Shih, and P. J. Marroń, “Experimental study for multi-layer parameter configuration of wsn links,” in 2015 IEEE 35 th International Conference on Distributed Computing Systems. IEEE, 2015, pp. 369-378. [Google Scholar]
  4. T. Huang, L. Lan, X. Fang, P. An, J. Min, and F. Wang, “Promises and challenges of big data computing in health sciences,” Big Data Research, vol. 2, no. 1, pp. 2-11, 2015. [CrossRef] [Google Scholar]
  5. R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. AlNemrat, and S. Venkatraman, “Deep learning approach for intelligent intrusion detection system,” IEEE Access, vol. 7, pp. 41 525-41 550, 2019. [Google Scholar]
  6. S. Mahfouz, F. Mourad-Chehade, P. Honeine, J. Farah, and H. Snoussi, “Kernel-based machine learning using radio-fingerprints for localization in wsns,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1324-1336, 2015. [CrossRef] [Google Scholar]
  7. Z. Noshad, N. Javaid, T. Saba, Z. Wadud, M. Q. Saleem, M. E. Alzahrani, and O. E. Sheta, “Fault detection in wireless sensor networks through the random forest classifier,” Sensors, vol. 19, no. 7, p. 1568, 2019. [CrossRef] [Google Scholar]
  8. X. Ma, T. Yao, M. Hu, Y. Dong, W. Liu, F. Wang, and J. Liu, “A survey on deep learning empowered iot applications,” IEEE Access, vol. 7, pp. 181 721181 732, 2019. [Google Scholar]
  9. M.-P. Hosseini, S. Lu, K. Kamaraj, A. Slowikowski, and H. C. Venkatesh, “Deep learning architectures,” in Deep learning: concepts and architectures. Springer, 2020, pp. 1-24. [Google Scholar]
  10. A. Parvat, J. Chavan, S. Kadam, S. Dev, and V. Pathak, “A survey of deep-learning frameworks,” in 2017 International Conference on Inventive Systems and Control (ICISC). IEEE, 2017, pp. 1-7. [Google Scholar]
  11. J. D. Day and H. Zimmermann, “The osi reference model,” Proceedings of the IEEE, vol. 71, no. 12, pp. 1334-1340, 1983. [CrossRef] [Google Scholar]
  12. Q. Wang and I. Balasingham, “Wireless sensor networks-an introduction,” Wireless sensor networks: application-centric design, pp. 1-14, 2010. [Google Scholar]
  13. H. M. A. Fahmy, “Protocol stack of wsns,” in Concepts, Applications, Experimentation and Analysis of Wireless Sensor Networks. Springer, 2021, pp. 53-66. [CrossRef] [Google Scholar]
  14. A. Kumar, M. Zhao, K.-J. Wong, Y. L. Guan, and P. H. J. Chong, “A comprehensive study of iot and wsn mac protocols: Research issues, challenges and opportunities,” IEEE Access, vol. 6, pp. 76 228-76 262, 2018. [Google Scholar]
  15. M. Pundir, J. K. Sandhu, and A. Kumar, “Quality- of-service prediction techniques for wireless sensor networks,” in Journal of Physics: Conference Series, vol. 1950, no. 1. IOP Publishing, 2021, p. 012082. [CrossRef] [Google Scholar]
  16. A. Akbas, H. U. Yildiz, A. M. Ozbayoglu, and B. Tavli, “Neural network based instant parameter prediction for wireless sensor network optimization models,” Wireless Networks, vol. 25, no. 6, pp. 3405-3418, 2019. [CrossRef] [Google Scholar]
  17. S. Peng, H. Jiang, H. Wang, H. Alwageed, and Y.- D. Yao, “Modulation classification using convolutional neural network based deep learning model,” in 2017 26th Wireless and Optical Communication Conference (WOCC). IEEE, 2017, pp. 1-5. [Google Scholar]
  18. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, pp. 1097-1105, 2012. [Google Scholar]
  19. T. O’shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, 2017. [CrossRef] [Google Scholar]
  20. P. H. Isolani, M. Claeys, C. Donato, L. Z. Granville, and S. Latré, “A survey on the programmability of wireless mac protocols,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1064-1092, 2018. [Google Scholar]
  21. R. Mennes, M. Camelo, M. Claeys, and S. Latre, “A neural-network based mf-tdma mac scheduler for collaborative wireless networks,” in 2018 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2018, pp. 1-6. [Google Scholar]
  22. R. Mennes, M. Claeys, F. A. De Figueiredo, I. Jabandzĭ c, I. Moer-man, and S. Latre, “Deep learning-based spectrum prediction collision avoidance for hybrid wireless environments,” IEEE Access, vol. 7, pp. 45 818-45 830, 2019. [Google Scholar]
  23. Y. Zhang, J. Hou, V. Towhidlou, and M. R. Shikh-Bahaei, “A neural network prediction-based adaptive mode selection scheme in full-duplex cognitive networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 540-553, 2019. [CrossRef] [Google Scholar]
  24. D. Cavalcanti, S. Das, J. Wang, and K. Challapali, “Cognitive radio based wireless sensor networks,” in 2008 Proceedings of 17th International Conference on Computer Communications and Networks. IEEE, 2008, pp. 1-6. [Google Scholar]
  25. H. Alhazmi, A. Almarhabi, A. Samarkandi, M. Alymani, M. H. Alhazmi, Z. Sheng, and Y.-D. Yao, “Classification of qpsk signals with different phase noise levels using deep learning,” in 2020 29th Wireless and Optical Communications Conference (WOCC). IEEE, 2020, pp. 1-5. [Google Scholar]
  26. N. Shabbir and S. R. Hassan, “Routing protocols for wireless sensor networks (wsns),” Wireless Sensor Networks-Insights and Innovations, 2017. [Google Scholar]
  27. W. Guo and W. Zhang, “A survey on intelligent routing protocols in wireless sensor networks,” Journal of Network and Computer Applications, vol. 38, pp. 185-201, 2014. [CrossRef] [Google Scholar]
  28. R. Sinde, F. Begum, K. Njau, and S. Kaijage, “Refining network lifetime of wireless sensor network using energy-efficient clustering and drlbased sleep scheduling,” Sensors, vol. 20, no. 5, p. 1540, 2020. [CrossRef] [Google Scholar]
  29. M. Ateeq, F. Ishmanov, M. K. Afzal, and M. Naeem, “Multi-parametric analysis of reliability and energy consumption in iot: A deep learning approach,” Sensors, vol. 19, no. 2, p. 309, 2019. [CrossRef] [Google Scholar]
  30. M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences,” Atmospheric environment, vol. 32, no. 14-15, pp. 2627-2636, 1998. [CrossRef] [Google Scholar]
  31. M. Ateeq, F. Ishmanov, M. K. Afzal, and M. Naeem, “Predicting delay in iot using deep learning: a multiparametric approach,” IEEE Access, vol. 7, pp. 62 022-62 031, 2019. [Google Scholar]
  32. M. Ateeq, M. K. Afzal, M. Naeem, M. Shafiq, and J.-G. Choi, “Deep learning-based multiparametric predictions for iot,” Sustainability, vol. 12, no. 18, p. 7752, 2020. [CrossRef] [Google Scholar]
  33. Chen Lei. Deep reinforcement learning. In Deep Learning and Practice with MindSpore, pages 217243. Springer, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.