Open Access
Issue |
ITM Web Conf.
Volume 43, 2022
The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/itmconf/20224301020 | |
Published online | 14 March 2022 |
- Schmidhuber, Juergen. (2014). Deep Learning in Neural Networks: An Overview. Neural Networks. 61. 10.1016/j.neunet.2014.09.003. [Google Scholar]
- Ghosh, Payel & Mitchell, Melanie. (2006). Segmentation of medical images using a genetic algorithm. GECCO 2006 - Genetic and Evolutionary Computation Conference. 2. 1171-1178. 10.1145/1143997.1144183. [Google Scholar]
- L. Li, Y. Zheng, M. Kallergi, and R. A. Clark, ‘‘Improved method for automatic identification of lung regions on chest radiographs,’’ Academic Radiol., vol. 8, no. 7, pp. 629–638, Jul. 2001. [CrossRef] [Google Scholar]
- NHS England and NHS Improvement, ‘Diagnostic imaging dataset statistical release’, (2020). [Google Scholar]
- P. Annangi, S. Thiruvenkadam, A. Raja, H. Xu, X. Sun, and L. Mao, ‘‘A region based active contour method for X-ray lung segmentation using prior shape and low level features,’’ in Proc. IEEE Int. Symp. Biomed. Imag., From Nano Macro, 2010, pp. 892–895. [CrossRef] [Google Scholar]
- C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Hammers, D. A. Dickie, M. V. HernÆndez, J. Wardlaw, and D. Rueckert, ‘‘GAN augmentation: Augmenting training data using generative adversarial networks,’’ 2018, arXiv:1810.10863. [Online]. Available: http://arxiv.org/abs/1810.10863 [Google Scholar]
- D. Yang, D. Xu, S. K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, and D. Comaniciu, ‘‘Automatic liver segmentation using an adversarial image-to-image network,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2017, pp. 507–515. [Google Scholar]
- V. Rajinikanth, N. Dey, A. N. J. Raj, A. E. Hassanien, K. C. Santosh, and N. S. M. Raja, ‘‘Harmony-search and Otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images,’’ 2020, arXiv:2004.03431. [Online]. Available: http://arxiv.org/abs/2004.03431. [Google Scholar]
- F. T. Zohora and K. C. Santosh, ‘‘Foreign circular element detection in chest X-Rays for effective automated pulmonary abnormality screening,’’ Int. J. Comput. Vis. Image Process., vol. 7, no. 2, pp. 36–49, Apr. 2017. [CrossRef] [Google Scholar]
- J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3431–3440. [Google Scholar]
- O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015, pp. 234–241. [Google Scholar]
- S. F. Qadri, D. Ai, G. Hu, M. Ahmad, Y. Huang, Y. Wang, and J. Yang, ‘‘Automatic deep feature learning via patch-based deep belief network for vertebrae segmentation in CT images,’’ Appl. Sci., vol. 9, no. 1, p. 69, Dec. 2018. [CrossRef] [Google Scholar]
- D. Yang, D. Xu, S. K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, and D. Comaniciu, ‘‘Automatic liver segmentation using an adversarial image-to-image network,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2017, pp. 507–515. [Google Scholar]
- J. Son, S. Jun Park, and K.-H. Jung, ‘‘Retinal vessel segmentation in fundoscopic images with generative adversarial networks,’’ 2017, arXiv:1706.09318. [Online]. Available: http://arxiv.org/abs/1706.09318. [Google Scholar]
- T. Iqbal and H. Ali, ‘‘Generative adversarial network for medical images (MI-GAN),’’ J. Med. Syst., vol. 42, no. 11, p. 231, Nov. 2018. [CrossRef] [Google Scholar]
- C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Hammers, D. A. Dickie, M. V. HernÆndez, J. Wardlaw, and D. Rueckert, ‘‘GAN augmentation: Augmenting training data using generative adversarial networks,’’ 2018, arXiv:1810.10863. [Online]. Available: http://arxiv.org/abs/1810.10863. [Google Scholar]
- T. Neff, C. Payer, D. Stern, and M. Urschler, ‘‘Generative adversarial network based synthesis for supervised medical image segmentation,’’ in Proc. OAGM ARW Joint Workshop, 2017, pp. 1–6. [Google Scholar]
- Nanqing Dong Wei Dai B, Zeya Wang, Xiaodan Liang, Hao Zhang, and Eric P Xing, ‘SCAN: Structure correcting adversarial network for organ segmentation in chest X-rays’, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings, volume 11045, p. 263. Springer, (2018). [Google Scholar]
- O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015. [CrossRef] [MathSciNet] [Google Scholar]
- Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for semantic segmentation," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431-3440, doi: 10.1109/CVPR.2015.7298965. [Google Scholar]
- Gaál, Gusztáv & Maga, Balázs & Lukács, András. (2020). Attention UNet Based Adversarial Architectures for Chest X-ray Lung Segmentation. [Google Scholar]
- Munawar, Faizan & Azmat, Shoaib & Iqbal, Talha & Grönlund, Christer & Ali, Hazrat. (2020). Segmentation of Lungs in Chest X-Ray Image Using Generative Adversarial Networks. [Google Scholar]
- J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi, K.-I. Komatsu, M. Matsui, H. Fujita, Y. Kodera, and K. Doi, ‘‘Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of Radiologists’ detection of pulmonary nodules,’’ Amer. J. Roentgenol., vol. 174, no. 1, pp. 71–74, Jan. 2000. [CrossRef] [Google Scholar]
- S. Jaeger, A. Karargyris, S. Candemir, L. Folio, J. Siegelman, F. Callaghan, Z. Xue, K. Palaniappan, R. K. Singh, S. Antani, G. Thoma, Y.-X. Wang, P.-X. Lu, and C. J. McDonald, ‘‘Automatic tuberculosis screening using chest radiographs,’’ IEEE Trans. Med. Imag., vol. 33, no. 2, pp. 233–245, Feb. 2014. [CrossRef] [Google Scholar]
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680. [Google Scholar]
- P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134. [Google Scholar]
- Junji Shiraishi, Shigehiko Katsuragawa, Junpei Ikezoe, Tsuneo Matsumoto, Takeshi Kobayashi, Ken-ichi Komatsu, Mitate Matsui, Hiroshi Fujita, Yoshie Kodera, and Kunio Doi, ‘Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules’, American Journal of Roentgenology, 174(1), 71–74, (2000). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.