Open Access
Issue
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 02003
Number of page(s) 9
Section Communication
DOI https://doi.org/10.1051/itmconf/20224402003
Published online 05 May 2022
  1. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection, ” 23 2020. [Google Scholar]
  2. D. G. Shreyas, S. Raksha, and B. G. Prasad, “Implementation of an anomalous human activity recognition system, ” SN Computer Science, vol. 1, no. 3, p. 168, May 2020. [CrossRef] [Google Scholar]
  3. G. Sreenu and M. A. Saleem Durai, “Intelligent video surveillance: a review through deep learning techniques for crowd analysis, ” Journal of Big Data, vol. 6, no. 1, p. 48, Jun 2019. [CrossRef] [Google Scholar]
  4. D. J. Samuel R., F. E., G. Manogaran, V. G.N, T. T., J. S., and A. A., “Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional lstm,” Computer Networks, vol. 151, pp. 191–200, 2019. [CrossRef] [Google Scholar]
  5. C.-B. Jin, T. D. Do, M. Liu, and H. Kim, “Real-time action recognition using multi-level action descriptor and dnn, ” in Intelligent Video Surveillance, A. J. R. Neves, Ed. Rijeka: IntechOpen, 2019, ch. 4. [Google Scholar]
  6. W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in surveillance videos,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. [Google Scholar]
  7. Abdel, M.M.G., Rashad, H. and Zaied, A. N. H. (2018). A comprehensive review of quadratic assignment problem: variants, hybrids and applications. Journal of Ambient Intelligence and Humanized Computing, 1–24. [Google Scholar]
  8. Huang W., Ding H., Chen G. A novel deep multi-channel residual networks-based metric learning method for moving human localization in video surveillance. Signal Process. 2018; 142: 104–113 (ISSN 01651684). [CrossRef] [Google Scholar]
  9. K.-E. Ko and K.-B. Sim, “Deep convolutional framework for abnormal behavior detection in a smart surveillance system, ” Engineering Applications of Artificial Intelligence, vol. 67, pp. 226–234, 2018. [CrossRef] [Google Scholar]
  10. Wang C., Yang H., Bartz C., Meinel C. Image captioning with deep bidirectional LSTMs and multi-task learning. ACM Trans Multimedia Comput Commun Appl. 2018;14:40. [Google Scholar]
  11. Zhang C., Tian Y., Guo X., Liu J. DAAL: deep activation-based attribute learning for action recognition in depth videos. Comput Vis Image Underst. 2018; 167: 37–49. [CrossRef] [Google Scholar]
  12. Lee W.K., Leong C.F., Lai W.K., Leow L.K., Yap T.H. ArchCam: real time expert system for suspicious behaviour detection in ATM site. Expert Syst Appl. 2018; 109: 12–24 [CrossRef] [Google Scholar]
  13. Dan X., Yan Y., Ricci E., Sebe N. Detecting anomalous events in videos by learning deep representations of appearance and motion. Comput Vis Image Underst. 2017; 156:117–127 [CrossRef] [Google Scholar]
  14. Tsakanikas V., Dagiuklas T. Video surveillance systems-current status and future trends. Comput Electr Eng. [Google Scholar]
  15. Feng Y., Yuan Y., Lu X. Learning deep event models for crowd anomaly detection. Neurocomputing. 2017;219:548–556. [CrossRef] [Google Scholar]
  16. Pang S., del Coz J.J., Yu, Z., Luaces, O., Díez, J. Deep learning to frame objects for visual target tracking. Eng Appl Artif Intell. 2017;65:406–420 (ISSN 0952-1976). [CrossRef] [Google Scholar]
  17. Zhou S., Shen W., Zeng D., Fang M., Zhang Z. Spatial-temporal convolutional neural networks for anomaly detection and localization in crowded scenes. Signal Process Image Commun. 2016;47:358–368 [CrossRef] [Google Scholar]
  18. Simonyan, K., Zisserman, A., 2014b. Very deep convolutional networks for large-scale image recognition, 2014b, aArXiv preprint arXiv:1409.1556. [Google Scholar]
  19. B. Hutchinson, L. Deng, and D. Yu, “Tensor deep stacking networks, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1944–1957, Aug. 2013. [CrossRef] [Google Scholar]
  20. Z. Fu and Y. Han, “Centroid weighted kalman filter for visual object tracking, ” Measurement, vol. 45, no. 4, pp. 650–655, 2012. [CrossRef] [Google Scholar]
  21. Saykol E., Güdükbay U., Ulusoy Ö. Scenario-based query processing for video-surveillance archives. Eng Appl Artif Intell. 2010;23(3):331–345. [CrossRef] [Google Scholar]
  22. M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis. Learning temporal regularity in video sequences. In CVPR, June 2016. [Google Scholar]
  23. D. Xu, E. Ricci, Y. Yan, J. Song, and N. Sebe. Learning deep representations of appearance and motion for anomalous event detection. In BMVC, 2015. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.