Open Access
ITM Web Conf.
Volume 45, 2022
2021 3rd International Conference on Computer Science Communication and Network Security (CSCNS2021)
Article Number 01008
Number of page(s) 8
Section Computer Technology and System Design
Published online 19 May 2022
  1. ITU-R M.1371-5. “Technical characteristics for an automatic identification system using time-division multiple access in the VHF maritime mobile band.” Feb 2014 [Google Scholar]
  2. Z. Shao, W. Wu, Z. Wang, W. Du and C. Li, “SeaShips: A Large-Scale Precisely Annotated Dataset for Ship Detection, ” in IEEE Transactions on Multimedia, vol. 20, no. 10, Oct. 2018, pp. 2593-2604. [CrossRef] [Google Scholar]
  3. D. Qiao, G. Liu, F. Dong, S. Jiang and L. Dai, “Marine Vessel Re-Identification: A Large-Scale Dataset and Global-and-Local Fusion-Based Discriminative Feature Learning, ” in IEEE Access, vol. 8, pp. 27744-27756, 2020, doi: 10.1109/ACCESS.2020.2969231. [CrossRef] [Google Scholar]
  4. X. Qin, M. Yan and D. Zhu, “Research on information fusion structure of radar and AIS, ” 2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 3316-3322, doi: 10.1109/CCDC.2018.8407697. [CrossRef] [Google Scholar]
  5. D. Chen, P. Chen and C. Zhou, “Research on AIS and Radar Information Fusion Method Based on Distributed Kalman, ” 2019 5th International Conference on Transportation Information and Safety (ICTIS), 2019, pp. 1482-1486, doi: 10.1109/ICTIS.2019.8883594. [CrossRef] [Google Scholar]
  6. Zhenjie Xu, Jiacheng Li and Yunfang Chen, “Survey of track association of radar and AIS, ” 2017 2nd International Conference on Image, Vision and Computing (ICIVC), 2017, pp. 960-964, doi: 10.1109/ICIVC.2017.7984697. [CrossRef] [Google Scholar]
  7. Xing Xu-Feng, Xie Shi-Yi, Huang Miao-Fen, Yang Guang-Zhao and Huang Shan. A Target Fusion Algorithm Based on offshore Radar and AIS sensors Wave-Measuring Sensor Buoy[J]. Journal of Ocean Technology, 2020, 39(03): 8-15. [Google Scholar]
  8. Zhou Qiuhua. Study on AIS and Radar Information Fusion Based on Fuzzy Comprehensive Function [D]. Dalian Maritime University, 2013. [Google Scholar]
  9. Hu Xiaorui. Research on Target Information Fusion of Radar and AIS Based on BP Neural Network[D]. Jimei University, 2012. [Google Scholar]
  10. Ø. K. Helgesen, E. F. Brekke, H. H. Helgesen and Ø. Engelhardtsen, “Sensor Combinations in Heterogeneous Multi-sensor Fusion for Maritime Target Tracking, ” 2019 22th International Conference on Information Fusion (FUSION), 2019, pp. 1-9. [Google Scholar]
  11. X. Nie, M. Yang and R. W. Liu, “Deep Neural Network-Based Robust Ship Detection Under Different Weather Conditions, ” 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 47-52, doi: 10.1109/ITSC.2019.8917475. [CrossRef] [Google Scholar]
  12. S. Matzka and R. Altendorfer, “A comparison of track-to-track fusion algorithms for automotive sensor fusion, ” 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008, pp. 189-194, doi: 10.1109/MFI.2008.4648063. [Google Scholar]
  13. S. Maresca, A. Bogoni and P. Ghelfi, “CFAR Detection applied to MIMO Radar in a Simulated Maritime Surveillance Scenario, ” 2019 16th European Radar Conference (EuRAD), 2019, pp. 157-160. [Google Scholar]
  14. B. Ristic, B. Vo, D. Clark and B. Vo, “A Metric for Performance Evaluation of MultiTarget Tracking Algorithms, ” in IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3452-3457, July 2011, doi: 10.1109/TSP.2011.2140111. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.