Open Access
Issue
ITM Web Conf.
Volume 45, 2022
2021 3rd International Conference on Computer Science Communication and Network Security (CSCNS2021)
Article Number 01015
Number of page(s) 13
Section Computer Technology and System Design
DOI https://doi.org/10.1051/itmconf/20224501015
Published online 19 May 2022
  1. Zhu Wenbohao, Li Xiaofeng, Sun Bo. A Study on the Upgrade of Traditional Industries through Digitalization in the Guangdong-Hong Kong-Macao Greater Bay Area in the Post-COVID-19 Pandemic Era [J]. Intertrade, 2021, (3): 52-59. [Google Scholar]
  2. Ray Y. Zhong, Xun Xu, Eberhard Klotz, Stephen T. Newman. Intelligent Manufacturing in the Context of Industry 4.0: A Review [J]. Engineering, 2017, 3(5): 616-630. [CrossRef] [Google Scholar]
  3. Christopher Prinz, Niklas Kreggenfeld, Bernd Kuhlenkötter. Lean meets Industrie 4.0 – a practical approach to interlink the method world and cyber-physical world [J]. Procedia Manufacturing, 2018 (23):21-26. [Google Scholar]
  4. Guan Da, Shi Lei, Kong Liang, et al. A study on the carry capacity calculation and bottleneck identification of Baotou-Shenhua railway [J]. Railway Transport and Economy. 2020, 42(4), 42-47. [Google Scholar]
  5. Mukund Subramaniyan, Anders Skoogh, Hans Salomonsson, et al. A data-driven algorithm to predict throughput bottlenecks in a production system based on active periods of the machines [J]. Computers & Industrial Engineering, 2018(125): 533-544. [Google Scholar]
  6. Michael Wedel, Michael von Hacht, Ralf Hieber, et al. Real-time bottleneck detection and prediction to prioritize fault repair in interlinked production lines[J]. Procedia CIRP, 2015(37):140-145. [Google Scholar]
  7. Binbin Huang, Wenbo Wang, Shan Ren, et al. A proactive task dispatching method based on future bottleneck prediction for the smart factory[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(3):278-293. [CrossRef] [Google Scholar]
  8. Yang Haolong, Guo Yu, Fang Weiguang, Cui Shiting. Bottleneck Prediction for Discrete Manufacturing Workshops in Real-time Location Environment[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020, (10): 176-180. [Google Scholar]
  9. Wang Shaowei, Jin Wenxiang. Research of Heuristic Rules Based on Dynamic Bottleneck of Production Process Optimization [J]. Computer and Digital Engineering, 2018, 46(9): 1927-1930. [Google Scholar]
  10. J Bhagwan, S Kumar. Independent Task Scheduling in Cloud Computing using MetaHeuristic HC-CSO Algorithm[J]. Indian Journal of Science and Technology, 2020, 13(2):114-126. [CrossRef] [Google Scholar]
  11. Wang Jinghua, Han Jianghong, Liu Zhenyu, et al. Scheduling Modeling in Discrete Manufacturing System Based on Oriented Petri Net [J]. Journal of System Simulation, 2008, 20(15): 4159-4162. [Google Scholar]
  12. Saurabh Shanua, Hanumat G. Sastry, Venkatadri Marriboyina. Optimal solution approach on large scale data to avoid deadlocks in resource allocations [J]. Materials Today Proceedings, 2021, 47(19): 7162-7166. [CrossRef] [Google Scholar]
  13. Liu C M, Wu F C. Using Petri nets to solve FMS problems[J]. International Journal Computer Integrated Manufacturing, 1993, 6 (3):175-185. [CrossRef] [Google Scholar]
  14. Wang Liya, Chen Youling, Ma Hanwu, et al. Production planning and control[M]. Beijing: Tsinghua University Press, 2007: 135-139. [Google Scholar]
  15. Sai Vennam. Hybrid cloud explained [EB/OL]. https://www.ibm.com/cloud/learn/loud-computing, 18 August 2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.