Open Access
Issue
ITM Web Conf.
Volume 46, 2022
International Conference on Engineering and Applied Sciences (ICEAS’22)
Article Number 01004
Number of page(s) 7
Section Engineering & Technology
DOI https://doi.org/10.1051/itmconf/20224601004
Published online 06 June 2022
  1. S. El Zaatari, M. Marei, W. Li, and Z. Usman, “Cobot programming for collaborative industrial tasks: An overview,” Robotics and Autonomous Systems, vol. 116, pp. 162–180, Jun. 2019, DOI: 10.1016/j.robot.2019.03.003. [CrossRef] [Google Scholar]
  2. M. Knudsen and J. Kaı˙Vo-Oja, “Collaborative Robots: Frontiers of Current Literature,” Journal of Intelligent Systems: Theory and Applications, pp. 13–20, Nov. 2020, DOI: 10.38016/jista.682479. [CrossRef] [Google Scholar]
  3. P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human-robot interaction review and challenges on task planning and programming,” International Journal of Computer Integrated Manufacturing, vol. 29, no. 8, pp. 916–931, Aug. 2016, DOI: 10.1080/0951192X.2015.1130251. [CrossRef] [Google Scholar]
  4. A. G. Frank, L. S. Dalenogare, and N. F. Ayala, “Industry 4.0 technologies: Implementation patterns in manufacturing companies,” International Journal of Production Economics, vol. 210, pp. 15–26, Apr. 2019, DOI: 10.1016/j.ijpe.2019.01.004. [CrossRef] [Google Scholar]
  5. D. Mourtzis and E. Vlachou, “A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance,” Journal of Manufacturing Systems, vol. 47, pp. 179–198, Apr. 2018, DOI: 10.1016/j.jmsy.2018.05.008. [CrossRef] [Google Scholar]
  6. A. Tabrez, S. Agrawal, and B. Hayes, “Explanation-Based Reward Coaching to Improve Human Performance via Reinforcement Learning,” in 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Korea (South), Mar. 2019, pp. 249–257. DOI: 10.1109/HRI.2019.8673104. [Google Scholar]
  7. A. Kinast, K. F. Doerner, and S. Rinderle-Ma, “Biased random-key genetic algorithm for cobot assignment in an assembly/disassembly job shop scheduling problem,” Procedia Computer Science, vol. 180, pp. 328–337, 2021, DOI: 10.1016/j.procs.2021.01.170. [CrossRef] [Google Scholar]
  8. B. Cunha, A. M. Madureira, B. Fonseca, and D. Coelho, “Deep Reinforcement Learning as a Job Shop Scheduling Solver: A Literature Review,” in Hybrid Intelligent Systems, vol. 923, A. M. Madureira, A. Abraham, N. Gandhi, and M. L. Varela, Eds. Cham: Springer International Publishing, 2020, pp. 350–359. DOI: 10.1007/978-3-030-14347-3_34. [CrossRef] [Google Scholar]
  9. C. Emeric, D. Geoffroy, and D. Paul-Eric, “Development of a new robotic programming support system for operators,” Procedia Manufacturing, vol. 51, pp. 73–80, 2020, DOI: 10.1016/j.promfg.2020.10.012. [CrossRef] [Google Scholar]
  10. L. B. Liboni, L. O. Cezarino, C. J. C. Jabbour, B. G. Oliveira, and N. O. Stefanelli, “Smart industry and the pathways to HRM 4.0: implications for SCM,” Supp Chain Management, vol. 24, no. 1, pp. 124–146, Jan. 2019, DOI: 10.1108/SCM-03-2018-0150. [CrossRef] [Google Scholar]
  11. D. Mourtzis and E. Vlachou, “A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance,” Journal of Manufacturing Systems, vol. 47, pp. 179–198, Apr. 2018, DOI: 10.1016/j.jmsy.2018.05.008. [CrossRef] [Google Scholar]
  12. G. Giannopoulou, E.-M. Borrelli, and F. McMaster, “‘Programming - It’s not for Normal People’: A Qualitative Study on User- Empowering Interfaces for Programming Collaborative Robots,” in 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), Vancouver, BC, Canada, Aug. 2021, pp. 37–44. DOI: 10.1109/RO-MAN50785.2021.9515535. [Google Scholar]
  13. B. Schallock, C. Rybski, R. Jochem, and H. Kohl, “Learning Factory for Industry 4.0 to provide future skills beyond technical training,” Procedia Manufacturing, vol. 23, pp. 27–32, 2018, DOI: 10.1016/j.promfg.2018.03.156. [CrossRef] [Google Scholar]
  14. S. Nikolaidis, P. Lasota, R. Ramakrishnan, and J. Shah, “Improved human-robot team performance through cross-training, an approach inspired by human team training practices,” The International Journal of Robotics Research, vol. 34, no. 14, pp. 1711–1730, Dec. 2015, DOI: 10.1177/0278364915609673. [CrossRef] [Google Scholar]
  15. M. Hernandez-de-Menendez, R. Morales- Menendez, C. A. Escobar, and M. McGovern, “Competencies for Industry 4.0,” Int J Interact Des Manuf, vol. 14, no. 4, pp. 1511–1524, Dec. 2020, doi: 10.1007/s12008-020-00716-2. [CrossRef] [Google Scholar]
  16. A. Zaki, M. Benbrahim, and B. Benchekroun, “PROPOSITION OF A MODEL FOR MULTI- PERIOD WORKFORCE ASSIGNMENT PROBLEM CONSIDERING VERSATILITY,”. Vol., no. 7, p. 17, 2017. [Google Scholar]
  17. T. P. Wright, “Factors Affecting the Cost of Airplanes,” Journal of the Aeronautical Sciences, vol. 3, no. 4, pp. 122–128, Feb. 1936, DOI: 10.2514/8.155. [CrossRef] [Google Scholar]
  18. C. H. Glock, E. H. Grosse, M. Y. Jaber, and T. L. Smunt, “Applications of learning curves in production and operations management: A systematic literature review,” Computers & Industrial Engineering, vol. 131, pp. 422–441, May 2019, DOI: 10.1016/j.cie.2018.10.030. [CrossRef] [Google Scholar]
  19. N. Asadayoobi, M. Y. Jaber, and S. Taghipour, “A new learning curve with fatigue-dependent learning rate,” Applied Mathematical Modelling, vol. 93, pp. 644–656, May 2021, DOI: 10.1016/j.apm.2020.12.005. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Oliff, Y. Liu, M. Kumar, M. Williams, and M. Ryan, “Reinforcement learning for facilitating human-robot-interaction in manufacturing,” Journal of Manufacturing Systems, vol. 56, pp. 326–340, Jul. 2020, DOI: 10.1016/j.jmsy.2020.06.018. [CrossRef] [Google Scholar]
  21. F. Fruggiero, A. Lambiase, S. Panagou, and L. Sabattini, “Cognitive Human Modeling in Collaborative Robotics,” Procedia Manufacturing, vol. 51, pp. 584–591, 2020, doi: 10.1016/j.promfg.2020.10.082. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.