Open Access
ITM Web Conf.
Volume 46, 2022
International Conference on Engineering and Applied Sciences (ICEAS’22)
Article Number 03001
Number of page(s) 6
Section Artificial Intelligence in Supply Chain Management
Published online 06 June 2022
  1. R. J. Solomonoff, “The time scale of artificial intelligence: Reflections on social effects,” Hum. Syst. Manag., 1985, doi: 10.3233/HSM-1985-5207. [Google Scholar]
  2. H. Min, “Artificial intelligence in supply chain management: Theory and applications,” Int. J. Logist. Res. Appl., 2010, doi: 10.1080/13675560902736537. [Google Scholar]
  3. S. Bringsjord and B. Schimanski, “What is artificial intelligence? Psychometric AI as an answer,” in IJCAI International Joint Conference on Artificial Intelligence, 2003. [Google Scholar]
  4. W. Roetzel, X. Luo, and D. Chen, Design and operation of heat exchangers and their networks. 2019. [Google Scholar]
  5. P. Killeen and S. Behavior, “Fuzzy Logic Fuzzy Logic,” vol. 35, no. 2007, pp. 93–100, 2013. [Google Scholar]
  6. R. Toorajipour, V. Sohrabpour, A. Nazarpour, P. Oghazi, and M. Fischl, “Artificial intelligence in supply chain management: A systematic literature review,” J. Bus. Res., vol. 122, pp. 502–517, Jan. 2021, doi: 10.1016/J.JBUSRES.2020.09.009. [CrossRef] [Google Scholar]
  7. K. N. Amirkolaii, A. Baboli, M. K. Shahzad, and R. Tonadre, “Demand Forecasting for Irregular Demands in Business Aircraft Spare Parts Supply Chains by using Artificial Intelligence (AI),” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15221–15226, Jul. 2017, doi:10.1016/J.IFACOL.2017.08.2371. [CrossRef] [Google Scholar]
  8. X. Li, C. W. Chan, and H. H. Nguyen, “Application of the Neural Decision Tree approach for prediction of petroleum production,” J. Pet. Sci. Eng., vol. 104, pp. 11–16, Apr. 2013, doi: 10.1016/J.PETROL.2013.03.018. [CrossRef] [Google Scholar]
  9. A. Gligor, C. D. Dumitru, and H. S. Grif, “Artificial intelligence solution for managing a photovoltaic energy production unit,” Procedia Manuf., vol. 22, pp. 626–633, Jan. 2018, doi: 10.1016/J.PROMFG.2018.03.091. [CrossRef] [Google Scholar]
  10. L. B. Sheremetov, A. González-Sánchez, I. López-Yáñez, and A. V. Ponomarev, “Time Series Forecasting: Applications to the Upstream Oil and Gas Supply Chain,” IFAC Proc. Vol., vol. 46, no. 9, pp. 957–962, Jan. 2013, doi: 10.3182/20130619-3-RU-3018.00526. [CrossRef] [Google Scholar]
  11. P. K. Bala, “Improving inventory performance with clustering based demand forecasts,” J. Model. Manag., vol. 7, no. 1, pp. 23–37, Jan. 2012, doi: 10.1108/17465661211208794/FULL/XML. [CrossRef] [Google Scholar]
  12. N. A. Mobarakeh, M. K. Shahzad, A. Baboli, and R. Tonadre, “Improved Forecasts for uncertain and unpredictable Spare Parts Demand in Business Aircraft’s with Bootstrap Method,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15241–15246, Jul. 2017, doi: 10.1016/J.IFACOL.2017.08.2379. [CrossRef] [Google Scholar]
  13. H. Wenzel, D. Smit, and S. Sardesai, “A Literature Review on Machine Learning in Supply Chain Management Supply Chain Management,” in Proceedings of the Hamburg International Conference of Logistics (HICL) - 27, 2019, no. September, p. 30. [Google Scholar]
  14. H. Bousqaoui, S. Achchab, and K. Tikito, “Machine learning applications in supply chains: Long short-term memory for demand forecasting,” in Lecture Notes in Networks and Systems, 2019. [Google Scholar]
  15. M. T. Hoppe, “Machine Learning in Supply Chain Management,” no. August, 2019, [Online]. Available: [Google Scholar]
  16. S. K. Jauhar and M. Pant, “Genetic algorithms in supply chain management: A critical analysis of the literature,” Sadhana - Acad. Proc. Eng. Sci., 2016, doi: 10.1007/s12046-016-0538-z. [Google Scholar]
  17. J. Du, V. Sugumaran, and B. Gao, “RFID and multi-agent based architecture for information sharing in prefabricated component supply chain,” IEEE Access, 2017, doi: 10.1109/ACCESS.2017.2665778. [Google Scholar]
  18. S. Balan, P. Vrat, and P. Kumar, “Reducing the Bullwhip effect in a supply chain with fuzzy logic approach,” Int. J. Integr. Supply Manag., 2007, doi: 10.1504/IJISM.2007.012630. [Google Scholar]
  19. K. Zhao and X. Yu, “A case based reasoning approach on supplier selection in petroleum enterprises,” Expert Syst. Appl., 2011, doi: 10.1016/j.eswa.2010.12.055. [Google Scholar]
  20. C. Jiang and Z. Sheng, “Case-based reinforcement learning for dynamic inventory control in a multi-agent supply-chain system,” Expert Syst. Appl., 2009, doi: 10.1016/j.eswa.2008.07.036. [Google Scholar]
  21. M. Chen, Y. Xia, and X. Wang, “Managing supply uncertainties through Bayesian information update,” IEEE Trans. Autom. Sci. Eng., 2010, doi: 10.1109/TASE.2009.2018466. [Google Scholar]
  22. M. D. Garvey, S. Carnovale, and S. Yeniyurt, “An analytical framework for supply network risk propagation: A Bayesian network approach,” Eur. J. Oper. Res., 2015, doi: 10.1016/j.ejor.2014.10.034. [Google Scholar]
  23. G. Baryannis, S. Validi, S. Dani, and G. Antoniou, “Supply chain risk management and artificial intelligence: state of the art and future research directions,” International Journal of Production Research. 2019, doi: 10.1080/00207543.2018.1530476. [Google Scholar]
  24. C. Bai and J. Sarkis, “Determining and applying sustainable supplier key performance indicators,” Supply Chain Manag., 2014, doi: 10.1108/SCM-12-2013-0441. [Google Scholar]
  25. X. Geng and Q. Liu, “A hybrid service supplier selection approach based on variable precision rough set and VIKOR for developing product service system,” Int. J. Comput. Integr. Manuf., 2015, doi: 10.1080/0951192X.2014.959058. [Google Scholar]
  26. H. Wenzel, D. Smit, and S. Sardesai, A Literature Review on Machine Learning in Supply Chain Management Supply Chain Management. 2019. [Google Scholar]
  27. E. Shahvand, M. H. Sebt, and M. T. Banki, “Developing fuzzy expert system for supplier and subcontractor evaluation in construction industry,” Sci. Iran., 2016, doi: 10.24200/sci.2016.2163. [Google Scholar]
  28. K. Sari, “Modeling of a fuzzy expert system for choosing an appropriate supply chain collaboration strategy,” Intell. Autom. Soft Comput., 2018, doi: 10.1080/10798587.2017.1352258. [Google Scholar]
  29. R. Venkata Rao, “Vendor selection in a supply chain using analytic hierarchy process and genetic algorithm methods,” Int. J. Serv. Oper. Manag., 2007, doi: 10.1504/IJSOM.2007.013097. [Google Scholar]
  30. D. A. Carrera and R. V. Mayorga, “Supply chain management: A modular Fuzzy Inference System approach in supplier selection for new product development,” J. Intell. Manuf., 2008, doi: 10.1007/s10845-007-0041-9. [Google Scholar]
  31. H. C. W. Lau, W. Kai Pang, and C. W. Y. Wong, “Methodology for monitoring supply chain performance: a fuzzy logic approach,” Logist. Inf. Manag., 2002, doi: 10.1108/09576050210436110. [Google Scholar]
  32. M. Mehdizadeh, “Integrating ABC analysis and rough set theory to control the inventories of distributor in the supply chain of auto spare parts,” Comput. Ind. Eng., 2020, doi: 10.1016/j.cie.2019.01.047. [Google Scholar]
  33. J. Wang and Y. F. Shu, “Fuzzy decision modeling for supply chain management,” Fuzzy Sets Syst., 2005, doi: 10.1016/j.fss.2004.07.005. [Google Scholar]
  34. Y. Amer, L. Luong, S. H. Lee, and M. A. Ashraf, “Optimizing order fulfillment using design for six sigma and fuzzy logic,” Int. J. Manag. Sci. Eng. Manag., 2008, doi: 10.1080/17509653.2008.10671038. [Google Scholar]
  35. R. M. Lima, R. M. Sousa, and P. J. Martins, “Distributed production planning and control agent-based system,” in International Journal of Production Research, 2006, doi: 10.1080/00207540600788992. [Google Scholar]
  36. F. T. S. Chan and H. K. Chan, “A simulation study with quantity flexibility in a supply chain subjected to uncertainties,” Int. J. Comput. Integr. Manuf., 2006, doi: 10.1080/09511920500324381. [Google Scholar]
  37. B. Ponte, E. Sierra, D. de la Fuente, and J. Lozano, “Exploring the interaction of inventory policies across the supply chain: An agent-based approach,” Comput. Oper. Res., 2017, doi: 10.1016/j.cor.2016.09.020. [Google Scholar]
  38. C. Y. Hsu, B. R. Kao, V. L. Ho, L. Li, and K. R. Lai, “An agent-based fuzzy constraint-directed negotiation model for solving supply chain planning and scheduling problems,” Appl. Soft Comput. J., 2016, doi: 10.1016/j.asoc.2016.07.030. [Google Scholar]
  39. M. E. Jefferies and W.-K. Yeap, Robotics and cognitive approaches to spatial mapping. Springer, 2008. [Google Scholar]
  40. K. Balamurugan, V. Selladurai, and B. Ilamathi, “Solving unequal area facility layout problems using genetic algorithm,” Int. J. Logist. Syst. Manag., vol. 2, no. 3, pp. 281–301, 2006. [Google Scholar]
  41. J. Antony, R. Swarnkar, M. Kumar, and M. K. Tiwari, “Design of synchronised supply chain: A genetic algorithm based six sigma constrained approach,” Int. J. Logist. Syst. Manag., 2006, doi: 10.1504/IJLSM.2006.009555. [Google Scholar]
  42. H. Min, H. J. Ko, and C. S. Ko, “A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns,” Omega, 2006, doi: 10.1016/ [Google Scholar]
  43. [43] C. S. Ko, H. Min, and H. J. Ko, “Determination of cutoff time for express courier services: A genetic algorithm approach,” Int. Trans. Oper. Res., 2007, doi: 10.1111/j.14753995.2007.00580.x [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.