Open Access
Issue
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
Article Number 01004
Number of page(s) 7
Section Computer Science and System Design, Application
DOI https://doi.org/10.1051/itmconf/20224701004
Published online 23 June 2022
  1. Tenney, Ian, Dipanjan Das, and Ellie Pavlick. “BERT rediscovers the classical NLP pipeline.” arXiv preprint arXiv: 1905. 05950 (2019). [Google Scholar]
  2. Polignano, Marco, et al. “Alberto: Italian BERT language understanding model for NLP challenging tasks based on tweets.” 6th Italian Conference on Computational Linguistics, CLiC-it 2019. Vol. 2481. CEUR, 2019. [Google Scholar]
  3. Gao, Zhengjie, et al. “Target-dependent sentiment classification with BERT.” Ieee Access 7 (2019): 154290–154299. [CrossRef] [Google Scholar]
  4. Masala, Mihai, Stefan Ruseti, and Mihai Dascalu. “Robert–a romanian bert model.” Proceedings of the 28th International Conference on Computational Linguistics. 2020. [Google Scholar]
  5. Moradshahi, Mehrad, et al. “HUBERT untangles BERT to improve transfer across NLP tasks.” arXiv preprint arXiv: 1910. 12647 (2019). [Google Scholar]
  6. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. [Google Scholar]
  7. Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018, June). Modeling relational data with graph convolutional networks. [Google Scholar]
  8. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May). Simplifying graph convolutional networks. In International conference on machine learning (pp. 6861–6871). PMLR. [Google Scholar]
  9. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. [Google Scholar]
  10. Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., & Tang, J. (2019, January). Session-based social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (pp. 555–563). [Google Scholar]
  11. Zhang, K., Huang, Y., Du, Y., & Wang, L. (2017). Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE Transactions on Image Processing, 26(9), 4193–4203. [Google Scholar]
  12. Cho, Y. S., Galstyan, A., Brantingham, P. J., & Tita, G. (2013). Latent self-exciting point process model for spatial-temporal networks. arXiv preprint arXiv:1302.2671. [Google Scholar]
  13. Wang, Y., Yao, H., & Zhao, S. (2016). Auto-encoder based dimensionality reduction. Neurocomputing, 184, 232–242. [CrossRef] [Google Scholar]
  14. Lange, S., & Riedmiller, M. (2010, July). Deep auto-encoder neural networks in reinforcement learning. In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE. [Google Scholar]
  15. Deng, L., Seltzer, M. L., Yu, D., Acero, A., Mohamed, A. R., & Hinton, G. (2010). Binary coding of speech spectrograms using a deep auto-encoder. In Eleventh Annual Conference of the International Speech Communication Association. [Google Scholar]
  16. Sainath, T. N., Kingsbury, B., & Ramabhadran, B. (2012, March). Auto-encoder bottleneck features using deep belief networks. In 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4153–4156). IEEE. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.