Open Access
Issue
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
Article Number 02013
Number of page(s) 6
Section Algorithm Optimization and Application
DOI https://doi.org/10.1051/itmconf/20224702013
Published online 23 June 2022
  1. Wolpaw J R, Birbaumer N, Heetderks W J, et al 2000 Brain-computer interface technology: a review of the first international meeting IEEE Trans. Rehabil. Eng. 8 164–173 [CrossRef] [Google Scholar]
  2. Yi W, Qiu S, Wang K, et al 2017 Enhancing performance of a motor imagery based brain–computer interface by incorp orating electrical stimulation-induced SSSEP J. Neural Eng. 14 02600 [Google Scholar]
  3. Pfurtscheller G, Da Silva F H L 1999 Event-related EEG/MEG synchronization and desynchronization: basic principles Clin. Neurophysiol. 110 1842–1857 [CrossRef] [Google Scholar]
  4. Ramoser H, Muller-Gerking J, Pfurtscheller G 2000 Optimal spatial filtering of single trial EEG during imagined hand movement IEEE Trans. Rehabil. Eng. 8 441–446 [CrossRef] [Google Scholar]
  5. Ang K K, Chin Z Y, Zhang H and Guan C 2008 Filter bank common spatial pattern (FBCSP) in brain–computer interface 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) IEEE Int. Joint Conf. Neural Networks (IEEE) pp 2390–2397 [Google Scholar]
  6. Yger F, Berar M, Lotte F 2016 Riemannian approaches in brain-computer interfaces: a review IEEE Trans. Neural Syst. Rehabil. Eng. 25 1753–1762 [Google Scholar]
  7. Lotte F, Bougrain L, Cichocki A, et al 2018 A review of classification algorithms for EEG-based brain–computer interfaces: a 10-year update J. Neural Eng. 15 031005 [CrossRef] [Google Scholar]
  8. Barachant A, Bonnet S, Congedo M, et al 2013 Classification of covariance matrices using a Riemannian-based kernel for BCI applications Neurocomputing 112 172–178 [CrossRef] [Google Scholar]
  9. Cortes C, Vapnik V 1995 Support-vector networks Mach. Learn. 20 273–297 [Google Scholar]
  10. Chen Y, Wiesel A, Eldar Y C, et al 2010 Shrinkage algorithms for MMSE covariance estimation IEEE Trans. Signal Process. 58 5016–5029. [CrossRef] [MathSciNet] [Google Scholar]
  11. Moakher M 2005 A differential geometric approach to the geometric mean of symmetric positive-definite matrices SIAM Journal on Matrix Analysis and Applications 26 735–747 [CrossRef] [MathSciNet] [Google Scholar]
  12. K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang 2012 Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b Front. Neurosci. 6 39 [Google Scholar]
  13. Tangermann M, Müller K R, Aertsen A, et al 2012 Review of the BCI competition IV Front. Neurosci. 6 00055 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.