Open Access
ITM Web Conf.
Volume 48, 2022
The 4th International Conference on Computing and Wireless Communication Systems (ICCWCS 2022)
Article Number 04004
Number of page(s) 5
Section Renewable Energy
Published online 02 September 2022
  1. F. A. O. Aashoor et F. V. P. Robinson, « A variable step size perturb and observe algorithm for photovoltaic maximum power point tracking », présenté à Proceedings of the Universities Power Engineering Conference, 2012. doi: 10.1109/UPEC.2012.6398612. [Google Scholar]
  2. R. Boukenoui, R. Bradai, A. Mellit, M. Ghanes, et H. Salhi, « Comparative analysis of P&O, modified hill climbing-FLC, and adaptive P&O-FLC MPPTs for microgrid standalone PV system », 2015, p. 10951099. doi: 10.1109/ICRERA.2015.7418579. [Google Scholar]
  3. K. S. M. Raza, H. Goto, H.-J. Guo, et O. Ichinokura, « Novel speed-sensorless adaptive hill climbing algorithm for fast and efficient maximum power point tracking of wind energy conversion systems », 2008, p. 628633. doi: 10.1109/ICSET.2008.4747083. [Google Scholar]
  4. M. Adly et A. H. Besheer, « An optimized fuzzy maximum power point tracker for stand alone photovoltaic systems: Ant colony approach », 2012, p. 113119. doi: 10.1109/ICIEA.2012.6360707. [Google Scholar]
  5. S. Allahabadi, H. Iman-Eini, et S. Farhangi, « Fast Artificial Neural Network Based Method for Estimation of the Global Maximum Power Point in Photovoltaic Systems », IEEE Trans. Ind. Electron., vol. 69, no 6, p. 58795888, juin 2022, doi: 10.1109/TIE.2021.3094463. [CrossRef] [Google Scholar]
  6. A. Arora et P. Gaur, « Comparison of ANN and ANFIS based MPPT Controller for grid connected PV systems », présenté à 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, 2016. doi: 10.1109/INDICON.2015.7443568. [Google Scholar]
  7. S. D. Al-Majidi, M. F. Abbod, et H. S. Al-Raweshidy, « Design of an efficient maximum power point tracker based on ANFIS using an experimental photovoltaic system data », Electron. Switz., vol. 8, no 8, 2019, doi: 10.3390/electronics8080858. [Google Scholar]
  8. X. Li, H. Wen, Y. Hu, et L. Jiang, « A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application », Renew. Energy, vol. 130, p. 416427, janv. 2019, doi: 10.1016/j.renene.2018.06.071. [Google Scholar]
  9. S. Rustemli et F. Dincer, « Modeling of Photovoltaic Panel and Examining Effects of Temperature in Matlab/Simulink », Elektron. Ir Elektrotechnika, vol. 109, no 3, p. 35-4040, 2011, doi: 10.5755/j01.eee.109.3.166. [Google Scholar]
  10. H. Chekenbah, L. Choukri, R. Lasri, Y. Maataoui, et M. Zouiten, « Implmeneting a Fuzzy Logic Controller to Improve the Performances of an Off-Grid Photovoltaic Generator », in 2019 4th World Conference on Complex Systems (WCCS), avr. 2019, p. 16. doi: 10.1109/ICoCS.2019.8930760. [Google Scholar]
  11. N. Mohan, T. M. Undeland, et W. P. Robbins, Power electronics: converters, applications, and design, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2003. [Google Scholar]
  12. F. Marini et B. Walczak, « Particle swarm optimization (PSO). A tutorial », Chemom. Intell. Lab. Syst., vol. 149, p. 153165, déc. 2015, doi: 10.1016/j.chemolab.2015.08.020. [Google Scholar]
  13. S. Makhloufi et S. Mekhilef, « Logarithmic PSO-Based Global/Local Maximum Power Point Tracker for Partially Shaded Photovoltaic Systems », IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no 1, p. 375386, févr. 2022, doi: 10.1109/JESTPE.2021.3073058. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.