Open Access
Issue
ITM Web Conf.
Volume 49, 2022
International Conference on Applied Mathematics and Numerical Methods – fourth edition (ICAMNM 2022)
Article Number 01003
Number of page(s) 10
Section Applied Mathematics
DOI https://doi.org/10.1051/itmconf/20224901003
Published online 16 November 2022
  1. C. Adiga, M. Smitha, On maximum degree energy of a Graph, Int. J. Contemp. Math. Sciences 4(8), 385-396 (2009). [MathSciNet] [Google Scholar]
  2. C. Adiga, C. S. Swamy, Bounds on the largest of minimum degree eigenvalues of graphs, International Mathematical Forum 5(37), 1823-1831 (2010). [MathSciNet] [Google Scholar]
  3. B. Basavanagoud, E. Chitra, Degree square sum energy of graphs, International Journal of Mathematics and Its Applications 6(2B), 193-205 (2018). [Google Scholar]
  4. B. Bozkurt, A. D. Maden, I. Gutman, A. S. Cevik, Randic Matrix and Randic Energy, MATCH Communications in Mathematical and in Computer Chemistry, 64 (1), 239-250, (2010) [MathSciNet] [Google Scholar]
  5. K. C. Das, I. Gutman, A. S. Cevik, On the Laplacian-Energy-Like Invariant, Linear Algebra and its Applications, 442, 58-68 (2014) [CrossRef] [MathSciNet] [Google Scholar]
  6. K. C. Das, I. Gutman, A. S. Cevik, B. Zhou, On Laplacian Energy, MATCH Communications in Mathematical and in Computer Chemistry, 70 (2), 689-696, (2013). [MathSciNet] [Google Scholar]
  7. K. C. Das, S. Sorgun, K. Xu, On Randic energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 72(1), 227-238 (2014). [MathSciNet] [Google Scholar]
  8. I. Gutman, The energy of a graph, Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz 103, 1-22 (1978). [Google Scholar]
  9. S. M. Hosamani, H. S. Ramane, On degree sum energy of a graph, European Journal of Pure and Applied Mathematics 9(3), 340-345 (2016). [MathSciNet] [Google Scholar]
  10. P. Nageswari, P. B. Sarasija, Seidel energy and its bounds, International Journal of Mathematical Analysis 8(58), 2869-2871 (2014). [CrossRef] [Google Scholar]
  11. G. K. Gök, A. R. Ashrafi, Some bounds for the resolvent energy, Applied Mathematics and Computation 397, 125958 (2021). [CrossRef] [Google Scholar]
  12. G. K. Gök, Some bounds on the Seidel energy of graphs, TWMS J. Appl. Eng. Math. 9, 949-956 (2019). [Google Scholar]
  13. R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, USA, 1985. [Google Scholar]
  14. V. Lokesha, B. S. Shetty, P. S. Ranjini, I. N. Cangul, A. S. Cevik, New bounds for Randic and GA Indices, Journal of Inequalities and Applications, 180, (2013). [Google Scholar]
  15. A. D. Maden, A. S. Cevik, On the Harary Energy and Harary Estrada Index of a Graph, MATCH Communications in Mathematical and in Computer Chemistry, 64 (1), 281296, (2010). [Google Scholar]
  16. C. Zheng-Qing, S. Nazeer, T. J. Zia, I. Ahmed, S. Shahid. Some new results on various graph energies of the splitting graph, Journal of Chemistry ID 7214047, 12 pages, (2019) https://doi.org/10.1155/2019/7214047. [Google Scholar]
  17. B. Zhou, N. Trinajstic, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs, Acta Chimica Slovenica 57(3), 513-517 (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.