Open Access
ITM Web Conf.
Volume 52, 2023
International Conference on Connected Object and Artificial Intelligence (COCIA’2023)
Article Number 02008
Number of page(s) 9
Section Artificial Intelligence and its Application
Published online 08 May 2023
  1. H. A. Ogul et A. Guran, « Imbalanced Dataset Problem in Sentiment Analysis », in 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, sept. 2019, p. 313–317. doi: 10.1109/UBMK.2019.8907041. [Google Scholar]
  2. S. Albahli, « Twitter sentiment analysis: An Arabic text mining approach based on COVID-19 », Front. Public Health, vol. 10, p. 966-779, oct. 2022, doi: 10.3389/fpubh.2022.966779. [CrossRef] [Google Scholar]
  3. N. Hicham, S. Karim, et N. Habbat, « An efficient approach for improving customer Sentiment Analysis in the Arabic language using an Ensemble machine learning technique », in 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), 2022, p. 1–6. doi: 10.1109/CommNet56067.2022.9993924. [Google Scholar]
  4. N. Hicham et S. Karim, « Analysis of Unsupervised Machine Learning Techniques for an Efficient Customer Segmentation using Clustering Ensemble and Spectral Clustering », Int. J. Adv. Comput. Sci. Appl., vol. 13, no 10, 2022, doi: 10.14569/IJACSA.2022.0131016. [Google Scholar]
  5. P. Chujai, K. Chomboon, P. Teerarassamee, N. Kerdprasop, et K. Kerdprasop, « Ensemble Learning For Imbalanced Data Classification Problem », in The Proceedings of the 2nd International Conference on Industrial Application Engineering 2015, 2015, p. 449–456. doi: 10.12792/iciae2015.079. [Google Scholar]
  6. K. L. Tan, C. P. Lee, K. M. Lim, et K. S. M. Anbananthen, « Sentiment Analysis With Ensemble Hybrid Deep Learning Model », IEEE Access, vol. 10, p. 103694–103704, 2022, doi: 10.1109/ACCESS.2022.3210182. [CrossRef] [Google Scholar]
  7. J. David, J. Cui, et F. Rahimi, « CLASSIFICATION OF IMBALANCED DATASET USING BERT EMBEDDINGS », 2020. [Google Scholar]
  8. H. Q. Abonizio, E. C. Paraiso, et S. Barbon, « Toward Text Data Augmentation for Sentiment Analysis », IEEE Trans. Artif. Intell., vol. 3, no 5, p. 657–668, oct. 2022, doi: 10.1109/TAI.2021.3114390. [CrossRef] [Google Scholar]
  9. N. Habbat, H. Anoun, et L. Hassouni, « A Novel Hybrid Network for Arabic Sentiment Analysis using fine-tuned AraBERT model », p. 12, 2021, doi: 10.15676/ijeei.2021.13.4.3. [Google Scholar]
  10. W. Antoun, F. Baly, et H. Hajj, « AraGPT2: Pre-Trained Transformer for Arabic Language Generation », p. 12. [Google Scholar]
  11. W. Antoun, F. Baly, et H. Hajj, « AraBERT: Transformer-based Model for Arabic Language Understanding », p. 7. [Google Scholar]
  12. A. Elnagar, Y. S. Khalifa, et A. Einea, « Hotel Arabic-Reviews Dataset Construction for Sentiment Analysis Applications », in Intelligent Natural Language Processing: Trends and Applications, K. Shaalan, A. E. Hassanien, et F. Tolba, Éd. Cham: Springer International Publishing, 2018, p. 35–52. doi: 10.1007/978-3-319-67056-0_3. [CrossRef] [Google Scholar]
  13. M. Aly et A. Atiya, « LABR: A Large Scale Arabic Book Reviews Dataset », 2013, doi: 10.13140/2.1.3960.5761. [Google Scholar]
  14. B. W. Matthews, « Comparison of the predicted and observed secondary structure of T4 phage lysozyme », Biochim. Biophys. Acta BBA Protein Struct., vol. 405, no 2, p. 442–451, 1975, doi: [CrossRef] [Google Scholar]
  15. S. Boughorbel, F. Jarray, et M. El-Anbari, « Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric », PLOS ONE, vol. 12, no 6, p. 1–17, juin 2017, doi: 10.1371/journal.pone.0177678. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.