Open Access
Issue
ITM Web Conf.
Volume 52, 2023
International Conference on Connected Object and Artificial Intelligence (COCIA’2023)
Article Number 02010
Number of page(s) 10
Section Artificial Intelligence and its Application
DOI https://doi.org/10.1051/itmconf/20235202010
Published online 08 May 2023
  1. P. Gras, Le moteur Stirling et autres moteurs à air chaud, Decoopman Sciences & Techniques, 2010. [Google Scholar]
  2. S. Kundu, Technologies for utilization of biogas as energy source: a review, International Journal of Engineering Research and Technology 5 (3) 775-780, (2016). [Google Scholar]
  3. P. Stouffs, “Machine thermique non conventionnelles:état de l’art, application, problème à résoudre, ” Journée d’étude de SFT (France), octobre 1999. [Google Scholar]
  4. McCulloch, W.S., Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943). [CrossRef] [Google Scholar]
  5. F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408, (1958). [CrossRef] [PubMed] [Google Scholar]
  6. F. Murtagh, Multilayer perceptrons for classification and regression, Neurocomputing, Volume 2, Issues 5–6, 183-197, 1991. [CrossRef] [Google Scholar]
  7. M. Buscema, Back Propagation Neural Networks. Substance use & misuse. 33. 233-70, 1998. [CrossRef] [Google Scholar]
  8. B. Kongtragool, S. Wongwises, “Investigation on power output of the gammaconfiguration low temperature differential Stirling engines”. Renewable Energy, 30(3), 465–476, 2005. [CrossRef] [Google Scholar]
  9. O. Taki, K.S. Rhazi, Y. Mejdoub “A Study of Stirling Engine Efficiency Combined with Solar Energy”, Advances in Science, Technology and Engineering Systems Journal, vol. 6, no. 2, 837-845 (2021). [CrossRef] [Google Scholar]
  10. M. Ahmadi, A. Mohammadi, S. Dehghani, M. Barranco-Jiménez. Multiobjective thermodynamic-based optimization of output power of Solar Dish Stirling engine by implementing an evolutionary algorithm. Energy Convers Manage, 75, 438–45, 2013. [CrossRef] [Google Scholar]
  11. H. Karabulut, C. ÇInar, F. Aksoy, H. Yücesu, Hüseyin, Improved Stirling engine performance through displacer surface treatment. International Journal of Energy Research. 34. 275–283, 2010. [CrossRef] [Google Scholar]
  12. T. Raymond, M.F. Zainudin, T. Zanariah, S. Ali, R. Bakar, Y. Ali, Study on the phase angle effect for alpha type stirling engine thermodynamics behavior, 2014. [Google Scholar]
  13. Sh. Zare, A.R. Tavakolpour-Saleh, Frequency-based design of a free piston Stirling engine using genetic algorithm, Energy, Volume 109, 466-480, 2016. [CrossRef] [Google Scholar]
  14. J. Singh, R. Banerjee, A Study on Single and Multi-layer Perceptron Neural Network. 3rd ICCMC, 2019. [Google Scholar]
  15. H. Mühlenbein, Limitations of multi-layer perceptron networks steps towards genetic neural networks, Parallel Computing, Volume 14, Issue 3, 249-260, 1990. [CrossRef] [Google Scholar]
  16. G. Bebis, M. Georgiopoulos, Feed-forward neural networks. IEEE Potentials, 13(4), 27–31, 1994. [CrossRef] [Google Scholar]
  17. L. Fausett, Fundamentals of Neural Network. Prentice Hall, Hoboken, 289-300, 1994. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.